Steven Lawrence, Bridget R Mueller, Emma K T Benn, Seunghee Kim-Schulze, Patrick Kwon, Jessica Robinson-Papp
{"title":"Autonomic Neuropathy is Associated with More Densely Interconnected Cytokine Networks in People with HIV.","authors":"Steven Lawrence, Bridget R Mueller, Emma K T Benn, Seunghee Kim-Schulze, Patrick Kwon, Jessica Robinson-Papp","doi":"10.1007/s11481-023-10088-5","DOIUrl":null,"url":null,"abstract":"<p><p>The autonomic nervous system (ANS) plays a complex role in the regulation of the immune system, with generally inhibitory effects via activation of β-adrenergic receptors on immune cells. We hypothesized that HIV-associated autonomic neuropathy (HIV-AN) would result in immune hyperresponsiveness which could be depicted using network analyses. Forty-two adults with well-controlled HIV underwent autonomic testing to yield the Composite Autonomic Severity Score (CASS). The observed range of CASS was 2-5, consistent with normal to moderate HIV-AN. To construct the networks, participants were divided into 4 groups based on the CASS (i.e., 2, 3, 4 or 5). Forty-four blood-based immune markers were included as nodes in all networks and the connections (i.e., edges) between pairs of nodes were determined by their bivariate Spearman's Rank Correlation Coefficient. Four centrality measures (strength, closeness, betweenness and expected influence) were calculated for each node in each network. The median value of each centrality measure across all nodes in each network was calculated as a quantitative representation of network complexity. Graphical representation of the four networks revealed greater complexity with increasing HIV-AN severity. This was confirmed by significant differences in the median value of all four centrality measures across the networks (p ≤ 0.025 for each). Among people with HIV, HIV-AN is associated with stronger and more numerous positive correlations between blood-based immune markers. Findings from this secondary analysis can be used to generate hypotheses for future studies investigating HIV-AN as a mechanism contributing to the chronic immune activation observed in HIV.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":" ","pages":"563-572"},"PeriodicalIF":6.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-023-10088-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The autonomic nervous system (ANS) plays a complex role in the regulation of the immune system, with generally inhibitory effects via activation of β-adrenergic receptors on immune cells. We hypothesized that HIV-associated autonomic neuropathy (HIV-AN) would result in immune hyperresponsiveness which could be depicted using network analyses. Forty-two adults with well-controlled HIV underwent autonomic testing to yield the Composite Autonomic Severity Score (CASS). The observed range of CASS was 2-5, consistent with normal to moderate HIV-AN. To construct the networks, participants were divided into 4 groups based on the CASS (i.e., 2, 3, 4 or 5). Forty-four blood-based immune markers were included as nodes in all networks and the connections (i.e., edges) between pairs of nodes were determined by their bivariate Spearman's Rank Correlation Coefficient. Four centrality measures (strength, closeness, betweenness and expected influence) were calculated for each node in each network. The median value of each centrality measure across all nodes in each network was calculated as a quantitative representation of network complexity. Graphical representation of the four networks revealed greater complexity with increasing HIV-AN severity. This was confirmed by significant differences in the median value of all four centrality measures across the networks (p ≤ 0.025 for each). Among people with HIV, HIV-AN is associated with stronger and more numerous positive correlations between blood-based immune markers. Findings from this secondary analysis can be used to generate hypotheses for future studies investigating HIV-AN as a mechanism contributing to the chronic immune activation observed in HIV.