{"title":"[Genetic basis of atrial fibrillation-on the road to precision medicine].","authors":"Shinwan Kany, Renate B Schnabel","doi":"10.1007/s00399-023-00974-z","DOIUrl":null,"url":null,"abstract":"<p><p>Atrial fibrillation (AF) is the most common cardiac arrhythmia and has complex genetic underpinnings. Despite advancements in treatment, mortality of AF patients remains high. This review discusses the genetic basis of AF and its implications for diagnosis and therapy. Although AF pathology has long been known to include a hereditary component, the first genes associated with AF were not identified until the early 2000s. Subsequent research with genome-wide association studies (GWAS) has implicated other genes and numerous genetic variants in AF. These studies have revealed nearly 140 different regions in the DNA with genome-wide significance associated with AF. In addition to common variants, rare variants with large effects have also been identified. The integration of these genetic findings into clinical practice holds promise for improving AF diagnosis and treatment, moving us closer to precision medicine. However, challenges remain, including the need for more diverse genetic data of non-European ancestry and improved genetic analyses of responses to AF therapy.</p>","PeriodicalId":52403,"journal":{"name":"Herzschrittmachertherapie und Elektrophysiologie","volume":" ","pages":"3-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879292/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herzschrittmachertherapie und Elektrophysiologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00399-023-00974-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia and has complex genetic underpinnings. Despite advancements in treatment, mortality of AF patients remains high. This review discusses the genetic basis of AF and its implications for diagnosis and therapy. Although AF pathology has long been known to include a hereditary component, the first genes associated with AF were not identified until the early 2000s. Subsequent research with genome-wide association studies (GWAS) has implicated other genes and numerous genetic variants in AF. These studies have revealed nearly 140 different regions in the DNA with genome-wide significance associated with AF. In addition to common variants, rare variants with large effects have also been identified. The integration of these genetic findings into clinical practice holds promise for improving AF diagnosis and treatment, moving us closer to precision medicine. However, challenges remain, including the need for more diverse genetic data of non-European ancestry and improved genetic analyses of responses to AF therapy.
期刊介绍:
Mit wissenschaftlichen Original- und Übersichtsarbeiten, Berichten über moderne Operationstechniken und experimentelle Methoden ist die Zeitschrift Herzschrittmachertherapie + Elektrophysiologie ein Diskussionsforum für Themen wie:
- Zelluläre Elektrophysiologie
- Theoretische Elektrophysiologie
- Klinische Elektrophysiologie
- Angewandte Herzschrittmachertherapie
- Bradykarde und tachykarde Herzrhythmusstörungen
- Plötzlicher Herztod und Risikostratifikation
- Elektrokardiographie
- Elektromedizinische Technologie
- Experimentelle und klinische Pharmakologie
- Herzchirurgie bei Herzrhythmusstörungen
Mitteilungen der Arbeitsgruppen Herzschrittmacher und Arrhythmie der Deutschen Gesellschaft für Kardiologie - Herz und Kreislaufforschung e.V. (DGK) sowie Stellungnahmen und praktische Hinweise runden das breite Spektrum dieser Zeitschrift ab.
Interessensgebiete: Kardiologie, Herzschrittmachertherapie, Herzschrittmachertechnologie, klinische Elektrophysiologie