{"title":"How big is Big Data? A comprehensive survey of data production, storage, and streaming in science and industry.","authors":"Luca Clissa, Mario Lassnig, Lorenzo Rinaldi","doi":"10.3389/fdata.2023.1271639","DOIUrl":null,"url":null,"abstract":"<p><p>The contemporary surge in data production is fueled by diverse factors, with contributions from numerous stakeholders across various sectors. Comparing the volumes at play among different big data entities is challenging due to the scarcity of publicly available data. This survey aims to offer a comprehensive perspective on the orders of magnitude involved in yearly data generation by some public and private leading organizations, using an array of online sources for estimation. These estimates are based on meaningful, individual data production metrics and plausible per-unit sizes. The primary objective is to offer insights into the comparative scales of major big data players, their sources, and data production flows, rather than striving for precise measurements or incorporating the latest updates. The results are succinctly conveyed through a visual representation of the relative data generation volumes across these entities.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"6 ","pages":"1271639"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620515/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2023.1271639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5
Abstract
The contemporary surge in data production is fueled by diverse factors, with contributions from numerous stakeholders across various sectors. Comparing the volumes at play among different big data entities is challenging due to the scarcity of publicly available data. This survey aims to offer a comprehensive perspective on the orders of magnitude involved in yearly data generation by some public and private leading organizations, using an array of online sources for estimation. These estimates are based on meaningful, individual data production metrics and plausible per-unit sizes. The primary objective is to offer insights into the comparative scales of major big data players, their sources, and data production flows, rather than striving for precise measurements or incorporating the latest updates. The results are succinctly conveyed through a visual representation of the relative data generation volumes across these entities.