How big is Big Data? A comprehensive survey of data production, storage, and streaming in science and industry.

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frontiers in Big Data Pub Date : 2023-10-19 eCollection Date: 2023-01-01 DOI:10.3389/fdata.2023.1271639
Luca Clissa, Mario Lassnig, Lorenzo Rinaldi
{"title":"How big is Big Data? A comprehensive survey of data production, storage, and streaming in science and industry.","authors":"Luca Clissa,&nbsp;Mario Lassnig,&nbsp;Lorenzo Rinaldi","doi":"10.3389/fdata.2023.1271639","DOIUrl":null,"url":null,"abstract":"<p><p>The contemporary surge in data production is fueled by diverse factors, with contributions from numerous stakeholders across various sectors. Comparing the volumes at play among different big data entities is challenging due to the scarcity of publicly available data. This survey aims to offer a comprehensive perspective on the orders of magnitude involved in yearly data generation by some public and private leading organizations, using an array of online sources for estimation. These estimates are based on meaningful, individual data production metrics and plausible per-unit sizes. The primary objective is to offer insights into the comparative scales of major big data players, their sources, and data production flows, rather than striving for precise measurements or incorporating the latest updates. The results are succinctly conveyed through a visual representation of the relative data generation volumes across these entities.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"6 ","pages":"1271639"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620515/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2023.1271639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5

Abstract

The contemporary surge in data production is fueled by diverse factors, with contributions from numerous stakeholders across various sectors. Comparing the volumes at play among different big data entities is challenging due to the scarcity of publicly available data. This survey aims to offer a comprehensive perspective on the orders of magnitude involved in yearly data generation by some public and private leading organizations, using an array of online sources for estimation. These estimates are based on meaningful, individual data production metrics and plausible per-unit sizes. The primary objective is to offer insights into the comparative scales of major big data players, their sources, and data production flows, rather than striving for precise measurements or incorporating the latest updates. The results are succinctly conveyed through a visual representation of the relative data generation volumes across these entities.

Abstract Image

大数据有多大?对科学和工业领域的数据生产、存储和流媒体的全面调查。
当代数据生产的激增是由多种因素推动的,各行业的众多利益相关者也做出了贡献。由于公开可用数据的稀缺性,比较不同大数据实体之间的交易量具有挑战性。这项调查旨在利用一系列在线来源进行估计,对一些公共和私营领先组织每年生成数据所涉及的数量级提供一个全面的视角。这些估计是基于有意义的个人数据生产指标和合理的单位规模。主要目标是深入了解主要大数据参与者的比较规模、来源和数据生产流,而不是努力进行精确的测量或纳入最新更新。通过这些实体的相对数据生成量的可视化表示,可以简洁地传达结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信