Knowledge-based model building for treatment planning for prostate cancer using commercial treatment planning quality assurance software tools.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Radiological Physics and Technology Pub Date : 2024-03-01 Epub Date: 2023-11-08 DOI:10.1007/s12194-023-00759-6
Nagi Masumoto, Motoharu Sasaki, Yuji Nakaguchi, Takeshi Kamomae, Yuki Kanazawa, Hitoshi Ikushima
{"title":"Knowledge-based model building for treatment planning for prostate cancer using commercial treatment planning quality assurance software tools.","authors":"Nagi Masumoto, Motoharu Sasaki, Yuji Nakaguchi, Takeshi Kamomae, Yuki Kanazawa, Hitoshi Ikushima","doi":"10.1007/s12194-023-00759-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study devised a method to efficiently launch the RapidPlan model for volumetric-modulated arc therapy for prostate cancer in small- and medium-sized facilities using high-quality treatment plans with the PlanIQ software as a reference. Treatment plans were generated for 30 patients with prostate cancer to construct the RapidPlan model using PlanIQ as a reference. In the context of PlanIQ-referenced treatment planning, treatment plans were developed, such that the feasibility dose-volume histogram of each organ-at-risk fell within F ≤ 0.1. For validation of the RapidPlan model, treatment plans were formulated for 20 patients using both RapidPlan and PlanIQ, and the differences were evaluated. The results of RapidPlan model validity assessment revealed that the RapidPlan-produced treatment plans exhibited higher quality in 11 of 20 patients. No significant differences were found between the treatment plans. In conclusion, high-quality treatment plans formulated using PlanIQ as reference facilitated efficient implementation of RapidPlan modeling.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"337-345"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-023-00759-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This study devised a method to efficiently launch the RapidPlan model for volumetric-modulated arc therapy for prostate cancer in small- and medium-sized facilities using high-quality treatment plans with the PlanIQ software as a reference. Treatment plans were generated for 30 patients with prostate cancer to construct the RapidPlan model using PlanIQ as a reference. In the context of PlanIQ-referenced treatment planning, treatment plans were developed, such that the feasibility dose-volume histogram of each organ-at-risk fell within F ≤ 0.1. For validation of the RapidPlan model, treatment plans were formulated for 20 patients using both RapidPlan and PlanIQ, and the differences were evaluated. The results of RapidPlan model validity assessment revealed that the RapidPlan-produced treatment plans exhibited higher quality in 11 of 20 patients. No significant differences were found between the treatment plans. In conclusion, high-quality treatment plans formulated using PlanIQ as reference facilitated efficient implementation of RapidPlan modeling.

使用商业治疗计划质量保证软件工具为癌症前列腺治疗计划建立基于知识的模型。
本研究设计了一种方法,以PlanIQ软件为参考,使用高质量的治疗计划,在中小型设施中有效启动RapidPlan模型,用于癌症前列腺体积调制电弧治疗。为30名癌症前列腺患者制定治疗计划,以PlanIQ为参考构建RapidPlan模型。在PlanIQ参考治疗计划的背景下,制定了治疗计划,使得每个处于风险中的器官的可行性剂量体积直方图在F范围内 ≤ 0.1.为了验证RapidPlan模型,使用RapidPlan和PlanIQ为20名患者制定了治疗计划,并对差异进行了评估。RapidPlan模型有效性评估结果显示,RapidPlan产生的治疗计划在20名患者中有11名表现出更高的质量。治疗方案之间没有发现显著差异。总之,使用PlanIQ作为参考制定的高质量治疗计划有助于RapidPlan建模的有效实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信