{"title":"Vasomotion heterogeneity and spectral characteristics in diabetic and hypertensive patients","authors":"Liangjing Zhao, Shuhong Liu, Yang Liu, Hui Tang","doi":"10.1016/j.mvr.2023.104620","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Vasomotion refers to the spontaneous oscillation of blood vessels within a frequency range of 0.01 to 1.6 Hz. Various disease states, including hypertension and diabetes, have been associated with alterations in vasomotion at the finger, indicating potential impairment of skin </span>microcirculation. Due to the non-linear nature of human </span>vasculature, the modification of vasomotion may vary across different locations for different diseases. In this study, </span>Laser Doppler Flowmetry<span> was used to measure blood flow motion at acupoints<span><span> LU8, LU5, SP6, and PC3 among 49 participants with or without diabetes and/or hypertension. Fast Fourier Transformation was used to analyze noise type while Hilbert-Huang Transformation and </span>wavelet analysis<span> were applied to assess Signal Noise Ratio (SNR) results. Statistical analysis revealed that different acupoints exhibit distinct spectral characteristics of vasomotion not only among healthy individuals but also among patients with diabetes and/or hypertension. The results showed strong heterogeneity of vasomotion among blood vessels, indicating that the vasomotion measured at a certain point may not reflect the real status of microcirculation.</span></span></span></p></div>","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"151 ","pages":"Article 104620"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microvascular research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026286223001462","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
Vasomotion refers to the spontaneous oscillation of blood vessels within a frequency range of 0.01 to 1.6 Hz. Various disease states, including hypertension and diabetes, have been associated with alterations in vasomotion at the finger, indicating potential impairment of skin microcirculation. Due to the non-linear nature of human vasculature, the modification of vasomotion may vary across different locations for different diseases. In this study, Laser Doppler Flowmetry was used to measure blood flow motion at acupoints LU8, LU5, SP6, and PC3 among 49 participants with or without diabetes and/or hypertension. Fast Fourier Transformation was used to analyze noise type while Hilbert-Huang Transformation and wavelet analysis were applied to assess Signal Noise Ratio (SNR) results. Statistical analysis revealed that different acupoints exhibit distinct spectral characteristics of vasomotion not only among healthy individuals but also among patients with diabetes and/or hypertension. The results showed strong heterogeneity of vasomotion among blood vessels, indicating that the vasomotion measured at a certain point may not reflect the real status of microcirculation.
期刊介绍:
Microvascular Research is dedicated to the dissemination of fundamental information related to the microvascular field. Full-length articles presenting the results of original research and brief communications are featured.
Research Areas include:
• Angiogenesis
• Biochemistry
• Bioengineering
• Biomathematics
• Biophysics
• Cancer
• Circulatory homeostasis
• Comparative physiology
• Drug delivery
• Neuropharmacology
• Microvascular pathology
• Rheology
• Tissue Engineering.