Jessica L. Ochoa, Stephan Germann, Breanna Conklin, Kenji Kurita, David J. Russell, Cassie Yang, José G. Napolitano
{"title":"The effect of tube quality on externally calibrated quantitative nuclear magnetic resonance analysis: How bad can it be?","authors":"Jessica L. Ochoa, Stephan Germann, Breanna Conklin, Kenji Kurita, David J. Russell, Cassie Yang, José G. Napolitano","doi":"10.1002/mrc.5404","DOIUrl":null,"url":null,"abstract":"<p>Externally calibrated quantitative nuclear magnetic resonance (NMR) approaches offer practical means to simultaneously evaluate chemical identity and content without the addition of calibrants to the test sample. Despite continuous advances in external calibration over the last few decades, adoption of these approaches has been slower than expected. Variations in NMR tube geometry are a commonly overlooked factor that can have a substantial effect on externally calibrated quantitation methods. In this report, we investigate the extent to which tube-to-tube volume variability can affect quantitative NMR outcomes. The results highlight the importance of considering tube quality during the development stages of externally calibrated quantitative methods. In addition, we propose a simple, yet effective volume correction strategy using the residual protonated solvent signal that, based on experiments with mixed NMR tubes of varying quality, alleviates the effect of tube-to-tube variability.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 1","pages":"4-10"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5404","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Externally calibrated quantitative nuclear magnetic resonance (NMR) approaches offer practical means to simultaneously evaluate chemical identity and content without the addition of calibrants to the test sample. Despite continuous advances in external calibration over the last few decades, adoption of these approaches has been slower than expected. Variations in NMR tube geometry are a commonly overlooked factor that can have a substantial effect on externally calibrated quantitation methods. In this report, we investigate the extent to which tube-to-tube volume variability can affect quantitative NMR outcomes. The results highlight the importance of considering tube quality during the development stages of externally calibrated quantitative methods. In addition, we propose a simple, yet effective volume correction strategy using the residual protonated solvent signal that, based on experiments with mixed NMR tubes of varying quality, alleviates the effect of tube-to-tube variability.
期刊介绍:
MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published.
The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.