Celebrating Diversity With Subtask Specialization in Shared Multiagent Reinforcement Learning.

IF 10.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chenghao Li, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, Chongjie Zhang
{"title":"Celebrating Diversity With Subtask Specialization in Shared Multiagent Reinforcement Learning.","authors":"Chenghao Li, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, Chongjie Zhang","doi":"10.1109/TNNLS.2023.3326744","DOIUrl":null,"url":null,"abstract":"<p><p>Subtask decomposition offers a promising approach for achieving and comprehending complex cooperative behaviors in multiagent systems. Nonetheless, existing methods often depend on intricate high-level strategies, which can hinder interpretability and learning efficiency. To tackle these challenges, we propose a novel approach that specializes subtasks for subgroups by employing diverse observation representation encoders within information bottlenecks. Moreover, to enhance the efficiency of subtask specialization while promoting sophisticated cooperation, we introduce diversity in both optimization and neural network architectures. These advancements enable our method to achieve state-of-the-art performance and offer interpretable subtask factorization across various scenarios in Google Research Football (GRF).</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2023.3326744","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Subtask decomposition offers a promising approach for achieving and comprehending complex cooperative behaviors in multiagent systems. Nonetheless, existing methods often depend on intricate high-level strategies, which can hinder interpretability and learning efficiency. To tackle these challenges, we propose a novel approach that specializes subtasks for subgroups by employing diverse observation representation encoders within information bottlenecks. Moreover, to enhance the efficiency of subtask specialization while promoting sophisticated cooperation, we introduce diversity in both optimization and neural network architectures. These advancements enable our method to achieve state-of-the-art performance and offer interpretable subtask factorization across various scenarios in Google Research Football (GRF).

在共享多智能体强化学习中用子任务专业化来庆祝多样性。
子任务分解为实现和理解多智能体系统中的复杂协作行为提供了一种很有前途的方法。尽管如此,现有的方法往往依赖于复杂的高级策略,这可能会阻碍可解释性和学习效率。为了应对这些挑战,我们提出了一种新的方法,通过在信息瓶颈中使用不同的观察表示编码器来专门针对子任务。此外,为了提高子任务专业化的效率,同时促进复杂的合作,我们在优化和神经网络架构中引入了多样性。这些进步使我们的方法能够实现最先进的性能,并在谷歌研究足球(GRF)的各种场景中提供可解释的子任务分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信