Nutritional contributions and processability of pasta made from climate-smart, sustainable crops: A critical review.

IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
P Pinel, M N Emmambux, C Bourlieu, V Micard
{"title":"Nutritional contributions and processability of pasta made from climate-smart, sustainable crops: A critical review.","authors":"P Pinel, M N Emmambux, C Bourlieu, V Micard","doi":"10.1080/10408398.2023.2271952","DOIUrl":null,"url":null,"abstract":"<p><p>Total or partial replacement of traditional durum wheat semolina (DWS) by alternative flours, such as legumes or wholegrain cereals in pasta improves their nutritional quality and can make them interesting vector for fortification. Climate-smart gluten-free (C-GF) flours, such as legumes (bambara groundnut, chickpea, cowpea, faba bean, and pigeon pea), some cereals (amaranth, teff, millet, and sorghum), and tubers (cassava and orange fleshed sweet potato), are of high interest to face ecological transition and develop sustainable food systems. In this review, an overview and a critical analysis of their nutritional potential for pasta production and processing conditions are undertaken. Special emphasis is given to understanding the influence of formulation and processing on techno-functional and nutritional (starch and protein digestibility) properties. Globally C-GF flours improve pasta protein quantity and quality, fibers, and micronutrients contents while keeping a low glycemic index and increasing protein digestibility. However, their use introduces anti-nutritional factors and could lead to the alteration of their techno-functional properties (higher cooking losses, lower firmness, and variability in color in comparison to classical DWS pasta). Nevertheless, these alternative pasta remain more interesting in terms of nutritional and techno-functional quality than traditional maize and rice-based gluten free pasta.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"207-242"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2023.2271952","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Total or partial replacement of traditional durum wheat semolina (DWS) by alternative flours, such as legumes or wholegrain cereals in pasta improves their nutritional quality and can make them interesting vector for fortification. Climate-smart gluten-free (C-GF) flours, such as legumes (bambara groundnut, chickpea, cowpea, faba bean, and pigeon pea), some cereals (amaranth, teff, millet, and sorghum), and tubers (cassava and orange fleshed sweet potato), are of high interest to face ecological transition and develop sustainable food systems. In this review, an overview and a critical analysis of their nutritional potential for pasta production and processing conditions are undertaken. Special emphasis is given to understanding the influence of formulation and processing on techno-functional and nutritional (starch and protein digestibility) properties. Globally C-GF flours improve pasta protein quantity and quality, fibers, and micronutrients contents while keeping a low glycemic index and increasing protein digestibility. However, their use introduces anti-nutritional factors and could lead to the alteration of their techno-functional properties (higher cooking losses, lower firmness, and variability in color in comparison to classical DWS pasta). Nevertheless, these alternative pasta remain more interesting in terms of nutritional and techno-functional quality than traditional maize and rice-based gluten free pasta.

气候智能、可持续作物制成的意大利面的营养贡献和加工性:一项重要综述。
用替代面粉(如意大利面中的豆类或全谷物)完全或部分取代传统的硬粒小麦粗面粉(DWS)可以提高其营养质量,并使其成为有趣的强化载体。气候智能无麸质(C-GF)面粉,如豆类(竹花生、鹰嘴豆、豇豆、蚕豆和鸽子豆)、一些谷物(苋、聚四氟乙烯、小米和高粱)和块茎(木薯和橙肉红薯),在面临生态转型和发展可持续粮食系统方面备受关注。在这篇综述中,对它们在意大利面生产和加工条件下的营养潜力进行了概述和批判性分析。特别强调了解配方和加工对技术功能和营养(淀粉和蛋白质消化率)特性的影响。在全球范围内,C-GF面粉提高了意大利面蛋白质的数量和质量、纤维和微量营养素的含量,同时保持了低血糖指数并提高了蛋白质的消化率。然而,它们的使用引入了抗营养因子,并可能导致其技术功能特性的改变(与经典DWS意大利面相比,烹饪损失更高,硬度更低,颜色多变)。尽管如此,与传统的玉米和大米无麸质意大利面相比,这些替代意大利面在营养和技术功能质量方面仍然更有趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
22.60
自引率
4.90%
发文量
600
审稿时长
7.5 months
期刊介绍: Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition. With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信