Yin Yang 1 suppresses apoptosis and oxidative stress injury in SH-SY5Y cells by facilitating NR4A1 expression.

IF 1.8 4区 医学 Q3 GENETICS & HEREDITY
Journal of neurogenetics Pub Date : 2023-09-01 Epub Date: 2023-11-03 DOI:10.1080/01677063.2023.2270745
Qin Kang, Wen Chai, Jun Min, Xinhui Qu
{"title":"Yin Yang 1 suppresses apoptosis and oxidative stress injury in SH-SY5Y cells by facilitating NR4A1 expression.","authors":"Qin Kang, Wen Chai, Jun Min, Xinhui Qu","doi":"10.1080/01677063.2023.2270745","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress plays a significant role in the development of Parkinson's disease (PD). Previous studies implicate nuclear receptor subfamily 4 group A member 1 (NR4A1) in oxidative stress associated with PD. However, the molecular mechanism underlying the regulation of NR4A1 expression remains incompletely understood. In the present study, a PD cell model was established by using 1-methyl-4-phenylpyridinium (MPP<sup>+</sup>) in SH-SY5Y cells. Cell viability and apoptosis were assessed by using CCK-8 assay and flow cytometry, respectively. The activities of LDH and SOD, and ROS generation were used as an indicators of oxidative stress. ChIP-PCR was performed to detect the interaction between Yin Yang 1 (YY1) and the <i>NR4A1</i> promoter. MPP<sup>+</sup> treatment inhibited SH-SY5Y cell viability in a dose- and time-dependent manner. NR4A1 and YY1 expression were decreased in MPP<sup>+</sup>-treated SH-SY5Y cells. Increasing NR4A1 or YY1 alleviated MPP<sup>+</sup>-induced apoptosis and oxidative stress in SH-SY5Y cells, whereas reduction of NR4A1 aggravated MPP<sup>+</sup>-induced cell injury. Transcription factor YY1 facilitated NR4A1 expression by binding with <i>NR4A1</i> promoter. In addition, in MPP<sup>+</sup>-treated SH-SY5Y cells, the inhibition of NR4A1 to apoptosis and oxidative stress was further enhanced by overexpression of YY1. The reduction of NR4A1 led to an elevation of apoptosis and oxidative stress in MPP<sup>+</sup>-induced SH-SY5Y cells, and this effect was partially reversed by the overexpression of YY1. In conclusion, YY1 suppresses MPP<sup>+</sup>-induced apoptosis and oxidative stress in SH-SY5Y cells by binding with <i>NR4A1</i> promoter and boosting NR4A1 expression. Our findings suggest that NR4A1 may be a candidate target for PD treatment.HIGHLIGHTSNR4A1 and YY1 are decreased in MPP<sup>+</sup>-treated SH-SY5Y cells.NR4A1 prevents oxidative stress and apoptosis in MPP<sup>+</sup>-treated SH-SY5Y cells.YY1 binds with <i>NR4A1</i> promoter and increases NR4A1 expression.YY1 enhances the inhibition of NR4A1 to SH-SY5Y cell apoptosis and oxidative stress.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":" ","pages":"115-123"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01677063.2023.2270745","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative stress plays a significant role in the development of Parkinson's disease (PD). Previous studies implicate nuclear receptor subfamily 4 group A member 1 (NR4A1) in oxidative stress associated with PD. However, the molecular mechanism underlying the regulation of NR4A1 expression remains incompletely understood. In the present study, a PD cell model was established by using 1-methyl-4-phenylpyridinium (MPP+) in SH-SY5Y cells. Cell viability and apoptosis were assessed by using CCK-8 assay and flow cytometry, respectively. The activities of LDH and SOD, and ROS generation were used as an indicators of oxidative stress. ChIP-PCR was performed to detect the interaction between Yin Yang 1 (YY1) and the NR4A1 promoter. MPP+ treatment inhibited SH-SY5Y cell viability in a dose- and time-dependent manner. NR4A1 and YY1 expression were decreased in MPP+-treated SH-SY5Y cells. Increasing NR4A1 or YY1 alleviated MPP+-induced apoptosis and oxidative stress in SH-SY5Y cells, whereas reduction of NR4A1 aggravated MPP+-induced cell injury. Transcription factor YY1 facilitated NR4A1 expression by binding with NR4A1 promoter. In addition, in MPP+-treated SH-SY5Y cells, the inhibition of NR4A1 to apoptosis and oxidative stress was further enhanced by overexpression of YY1. The reduction of NR4A1 led to an elevation of apoptosis and oxidative stress in MPP+-induced SH-SY5Y cells, and this effect was partially reversed by the overexpression of YY1. In conclusion, YY1 suppresses MPP+-induced apoptosis and oxidative stress in SH-SY5Y cells by binding with NR4A1 promoter and boosting NR4A1 expression. Our findings suggest that NR4A1 may be a candidate target for PD treatment.HIGHLIGHTSNR4A1 and YY1 are decreased in MPP+-treated SH-SY5Y cells.NR4A1 prevents oxidative stress and apoptosis in MPP+-treated SH-SY5Y cells.YY1 binds with NR4A1 promoter and increases NR4A1 expression.YY1 enhances the inhibition of NR4A1 to SH-SY5Y cell apoptosis and oxidative stress.

阴阳1号通过促进NR4A1的表达来抑制SH-SY5Y细胞的凋亡和氧化应激损伤。
氧化应激在帕金森病(PD)的发展中起着重要作用。先前的研究表明,核受体亚家族4 A组成员1(NR4A1)与PD相关的氧化应激有关。然而,NR4A1表达调控的分子机制尚不完全清楚。在本研究中,通过在SH-SY5Y细胞中使用1-甲基-4-苯基吡啶鎓(MPP+)建立PD细胞模型。分别用CCK-8法和流式细胞术评估细胞活力和细胞凋亡。LDH和SOD的活性以及ROS的产生被用作氧化应激的指标。ChIP-PCR检测阴阳1(YY1)与NR4A1启动子之间的相互作用。MPP+处理以剂量和时间依赖的方式抑制SH-SY5Y细胞的活力。NR4A1和YY1在MPP+处理的SH-SY5Y细胞中的表达降低。增加NR4A1或YY1可减轻MPP+诱导的SH-SY5Y细胞凋亡和氧化应激,而减少NR4A1可加重MPP+诱发的细胞损伤。转录因子YY1通过与NR4A1启动子结合促进NR4A1的表达。此外,在MPP+处理的SH-SY5Y细胞中,YY1的过表达进一步增强了NR4A1对细胞凋亡和氧化应激的抑制作用。NR4A1的减少导致MPP+诱导的SH-SY5Y细胞中细胞凋亡和氧化应激的升高,YY1的过表达部分逆转了这种作用。总之,YY1通过与NR4A1启动子结合并促进NR4A1的表达来抑制MPP+诱导的SH-SY5Y细胞的凋亡和氧化应激。我们的研究结果表明,NR4A1可能是PD治疗的候选靶点。HIGHGHGHTSNR4A1和YY1在MPP+处理的SH-SY5Y细胞中降低。NR4A1在MPP+处理的SH-SY5Y细胞中防止氧化应激和细胞凋亡。YY1与NR4A1启动子结合并增加NR4A1的表达。YY1增强NR4A1对SH-SY5Y细胞凋亡和氧化应激的抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of neurogenetics
Journal of neurogenetics 医学-神经科学
CiteScore
4.40
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: The Journal is appropriate for papers on behavioral, biochemical, or cellular aspects of neural function, plasticity, aging or disease. In addition to analyses in the traditional genetic-model organisms, C. elegans, Drosophila, mouse and the zebrafish, the Journal encourages submission of neurogenetic investigations performed in organisms not easily amenable to experimental genetics. Such investigations might, for instance, describe behavioral differences deriving from genetic variation within a species, or report human disease studies that provide exceptional insights into biological mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信