Novel near-infrared spectroscopy-intravascular ultrasound-based deep-learning methodology for accurate coronary computed tomography plaque quantification and characterization.

European heart journal open Pub Date : 2023-10-30 eCollection Date: 2023-09-01 DOI:10.1093/ehjopen/oead090
Anantharaman Ramasamy, Hessam Sokooti, Xiaotong Zhang, Evangelia Tzorovili, Retesh Bajaj, Pieter Kitslaar, Alexander Broersen, Rajiv Amersey, Ajay Jain, Mick Ozkor, Johan H C Reiber, Jouke Dijkstra, Patrick W Serruys, James C Moon, Anthony Mathur, Andreas Baumbach, Ryo Torii, Francesca Pugliese, Christos V Bourantas
{"title":"Novel near-infrared spectroscopy-intravascular ultrasound-based deep-learning methodology for accurate coronary computed tomography plaque quantification and characterization.","authors":"Anantharaman Ramasamy,&nbsp;Hessam Sokooti,&nbsp;Xiaotong Zhang,&nbsp;Evangelia Tzorovili,&nbsp;Retesh Bajaj,&nbsp;Pieter Kitslaar,&nbsp;Alexander Broersen,&nbsp;Rajiv Amersey,&nbsp;Ajay Jain,&nbsp;Mick Ozkor,&nbsp;Johan H C Reiber,&nbsp;Jouke Dijkstra,&nbsp;Patrick W Serruys,&nbsp;James C Moon,&nbsp;Anthony Mathur,&nbsp;Andreas Baumbach,&nbsp;Ryo Torii,&nbsp;Francesca Pugliese,&nbsp;Christos V Bourantas","doi":"10.1093/ehjopen/oead090","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Coronary computed tomography angiography (CCTA) is inferior to intravascular imaging in detecting plaque morphology and quantifying plaque burden. We aim to, for the first time, train a deep-learning (DL) methodology for accurate plaque quantification and characterization in CCTA using near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS).</p><p><strong>Methods and results: </strong>Seventy patients were prospectively recruited who underwent CCTA and NIRS-IVUS imaging. Corresponding cross sections were matched using an in-house developed software, and the estimations of NIRS-IVUS for the lumen, vessel wall borders, and plaque composition were used to train a convolutional neural network in 138 vessels. The performance was evaluated in 48 vessels and compared against the estimations of NIRS-IVUS and the conventional CCTA expert analysis. Sixty-four patients (186 vessels, 22 012 matched cross sections) were included. Deep-learning methodology provided estimations that were closer to NIRS-IVUS compared with the conventional approach for the total atheroma volume (Δ<sub>DL-NIRS-IVUS</sub>: -37.8 ± 89.0 vs. Δ<sub>Conv-NIRS-IVUS</sub>: 243.3 ± 183.7 mm3, variance ratio: 4.262, <i>P</i> < 0.001) and percentage atheroma volume (-3.34 ± 5.77 vs. 17.20 ± 7.20%, variance ratio: 1.578, <i>P</i> < 0.001). The DL methodology detected lesions more accurately than the conventional approach (Area under the curve (AUC): 0.77 vs. 0.67, <i>P</i> < 0.001) and quantified minimum lumen area (Δ<sub>DL-NIRS-IVUS</sub>: -0.35 ± 1.81 vs. Δ<sub>Conv-NIRS-IVUS</sub>: 1.37 ± 2.32 mm<sup>2</sup>, variance ratio: 1.634, <i>P</i> < 0.001), maximum plaque burden (4.33 ± 11.83% vs. 5.77 ± 16.58%, variance ratio: 2.071, <i>P</i> = 0.004), and calcific burden (-51.2 ± 115.1 vs. -54.3 ± 144.4, variance ratio: 2.308, <i>P</i> < 0.001) more accurately than conventional approach. The DL methodology was able to segment a vessel on CCTA in 0.3 s.</p><p><strong>Conclusions: </strong>The DL methodology developed for CCTA analysis from co-registered NIRS-IVUS and CCTA data enables rapid and accurate assessment of lesion morphology and is superior to expert analysts (Clinicaltrials.gov: NCT03556644).</p>","PeriodicalId":93995,"journal":{"name":"European heart journal open","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615127/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjopen/oead090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Coronary computed tomography angiography (CCTA) is inferior to intravascular imaging in detecting plaque morphology and quantifying plaque burden. We aim to, for the first time, train a deep-learning (DL) methodology for accurate plaque quantification and characterization in CCTA using near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS).

Methods and results: Seventy patients were prospectively recruited who underwent CCTA and NIRS-IVUS imaging. Corresponding cross sections were matched using an in-house developed software, and the estimations of NIRS-IVUS for the lumen, vessel wall borders, and plaque composition were used to train a convolutional neural network in 138 vessels. The performance was evaluated in 48 vessels and compared against the estimations of NIRS-IVUS and the conventional CCTA expert analysis. Sixty-four patients (186 vessels, 22 012 matched cross sections) were included. Deep-learning methodology provided estimations that were closer to NIRS-IVUS compared with the conventional approach for the total atheroma volume (ΔDL-NIRS-IVUS: -37.8 ± 89.0 vs. ΔConv-NIRS-IVUS: 243.3 ± 183.7 mm3, variance ratio: 4.262, P < 0.001) and percentage atheroma volume (-3.34 ± 5.77 vs. 17.20 ± 7.20%, variance ratio: 1.578, P < 0.001). The DL methodology detected lesions more accurately than the conventional approach (Area under the curve (AUC): 0.77 vs. 0.67, P < 0.001) and quantified minimum lumen area (ΔDL-NIRS-IVUS: -0.35 ± 1.81 vs. ΔConv-NIRS-IVUS: 1.37 ± 2.32 mm2, variance ratio: 1.634, P < 0.001), maximum plaque burden (4.33 ± 11.83% vs. 5.77 ± 16.58%, variance ratio: 2.071, P = 0.004), and calcific burden (-51.2 ± 115.1 vs. -54.3 ± 144.4, variance ratio: 2.308, P < 0.001) more accurately than conventional approach. The DL methodology was able to segment a vessel on CCTA in 0.3 s.

Conclusions: The DL methodology developed for CCTA analysis from co-registered NIRS-IVUS and CCTA data enables rapid and accurate assessment of lesion morphology and is superior to expert analysts (Clinicaltrials.gov: NCT03556644).

Abstract Image

Abstract Image

Abstract Image

新的基于近红外光谱血管内超声的深度学习方法用于精确的冠状动脉计算机断层扫描斑块定量和表征。
目的:冠状动脉计算机断层摄影血管造影术(CCTA)在检测斑块形态和量化斑块负荷方面不如血管内成像。我们的目标是首次使用近红外光谱血管内超声(NIRS-IVUS)训练一种深度学习(DL)方法,用于CCTA中准确的斑块定量和表征。方法和结果:前瞻性招募了70名接受CCTA和NIRS-IV US成像的患者。使用内部开发的软件匹配相应的横截面,并使用NIRS-IVUS对管腔、血管壁边界和斑块组成的估计来训练138个血管中的卷积神经网络。对48艘船只的性能进行了评估,并与NIRS-IVUS和传统CCTA专家分析的估计值进行了比较。64名患者(186支血管,22012个匹配横截面)被纳入。与传统方法相比,深度学习方法提供的动脉粥样硬化总体积估计更接近NIRS-IVUS(ΔDL-NIRS-IVUS:-37.8±89.0 vs.ΔConv NIRS IVUS:243.3±183.7 mm3,方差比:4.262,P<0.001)和斑块体积百分比(-3.34±5.77 vs.17.20±7.20%,方差比为1.578,P<0.001 mm2,方差比:1.634,P<0.001)、最大斑块负荷(4.33±11.83%对5.77±16.58%,方差比2.071,P=0.004)和钙化负荷(-51.2±115.1对-54.3±144.4,方差比2.308,P=0.001)比传统方法更准确。DL方法能够在0.3 s.结论:根据共同注册的NIRS-IVUS和CCTA数据为CCTA分析开发的DL方法能够快速准确地评估病变形态,并且优于专家分析(Clinicaltrials.gov:NCT03556644)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信