Protein quality assessment with a loss function designed for high-quality decoys.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2023-10-17 eCollection Date: 2023-01-01 DOI:10.3389/fbinf.2023.1198218
Soumyadip Roy, Asa Ben-Hur
{"title":"Protein quality assessment with a loss function designed for high-quality decoys.","authors":"Soumyadip Roy,&nbsp;Asa Ben-Hur","doi":"10.3389/fbinf.2023.1198218","DOIUrl":null,"url":null,"abstract":"<p><p><b>Motivation:</b> The prediction of a protein 3D structure is essential for understanding protein function, drug discovery, and disease mechanisms; with the advent of methods like AlphaFold that are capable of producing very high-quality decoys, ensuring the quality of those decoys can provide further confidence in the accuracy of their predictions. <b>Results:</b> In this work, we describe Q<sub><i>ϵ</i></sub>, a graph convolutional network (GCN) that utilizes a minimal set of atom and residue features as inputs to predict the global distance test total score (GDTTS) and local distance difference test (lDDT) score of a decoy. To improve the model's performance, we introduce a novel loss function based on the <i>ϵ</i>-insensitive loss function used for SVM regression. This loss function is specifically designed for evaluating the characteristics of the quality assessment problem and provides predictions with improved accuracy over standard loss functions used for this task. Despite using only a minimal set of features, it matches the performance of recent state-of-the-art methods like DeepUMQA. <b>Availability:</b> The code for Q<sub><i>ϵ</i></sub> is available at https://github.com/soumyadip1997/qepsilon.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"3 ","pages":"1198218"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616882/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2023.1198218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The prediction of a protein 3D structure is essential for understanding protein function, drug discovery, and disease mechanisms; with the advent of methods like AlphaFold that are capable of producing very high-quality decoys, ensuring the quality of those decoys can provide further confidence in the accuracy of their predictions. Results: In this work, we describe Qϵ, a graph convolutional network (GCN) that utilizes a minimal set of atom and residue features as inputs to predict the global distance test total score (GDTTS) and local distance difference test (lDDT) score of a decoy. To improve the model's performance, we introduce a novel loss function based on the ϵ-insensitive loss function used for SVM regression. This loss function is specifically designed for evaluating the characteristics of the quality assessment problem and provides predictions with improved accuracy over standard loss functions used for this task. Despite using only a minimal set of features, it matches the performance of recent state-of-the-art methods like DeepUMQA. Availability: The code for Qϵ is available at https://github.com/soumyadip1997/qepsilon.

Abstract Image

Abstract Image

Abstract Image

蛋白质质量评估,具有专为高质量诱饵设计的损失函数。
动机:蛋白质3D结构的预测对于理解蛋白质功能、药物发现和疾病机制至关重要;随着像AlphaFold这样能够产生高质量诱饵的方法的出现,确保这些诱饵的质量可以进一步提高预测的准确性。结果:在这项工作中,我们描述了一种图卷积网络(GCN),它利用原子和残差特征的最小集作为输入来预测诱饵的全局距离测试总分(GDTTS)和局部距离差分测试(lDDT)分数。为了提高模型的性能,我们引入了一种新的基于用于SVM回归的不敏感损失函数的损失函数。该损失函数是专门为评估质量评估问题的特征而设计的,并且与用于该任务的标准损失函数相比,该损失函数提供了具有改进准确性的预测。尽管只使用了一组最小的功能,但它的性能与最近最先进的方法(如DeepUMQA)相匹配。可用性:Q的代码可在https://github.com/soumyadip1997/qepsilon.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信