{"title":"Anionic polymer-coated magnetic nanocomposites for immobilization with palladium nanoparticles as catalysts for the reduction of 4-nitrophenol","authors":"Usana Mahanitipong, Jakkrit Tummachote, Wachirawit Thoopbucha, Wasawat Inthanusorn, Metha Rutnakornpituk","doi":"10.1186/s11671-023-03918-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the synthesis of magnetite nanoparticles (MNP) coated with poly(poly(ethylene glycol) methacrylate) (PPEGMA) and/or poly(acrylic acid) (PAA) to anchor palladium nanoparticles (Pd) for their application as recyclable catalysts in the reduction of 4-nitrophenol (4NP). It was hypothesized that the abundance of oxygen atoms in PPEGMA enabled coordination with the Pd and provided good water dispersibility of the nanocomposites, while anionic PAA stabilized Pd and reduced the catalyst aggregation through electrostatic repulsion. Three different polymer coatings on MNP (PAA, PPEGMA, and PAA-co-PPEGMA polymers) were investigated to assess their influence on both the catalytic activity and reusability of the catalysts. Transmission electron microscopy (TEM) analysis indicated the distribution of spherical Pd nanoparticles (3–5 nm in diameter) and MNP (9–12 nm in diameter). Photocorrelation spectroscopy (PCS) revealed an average hydrodynamic size of the catalysts ranging from 540 to 875 nm in diameter, with a negative charge on their surface. The Pd content of the catalysts ranged from 4.30 to 6.33% w/w. The nanocomposites coated with PAA-co-PPEGMA polymers exhibited more favorable catalytic activity in the 4NP reduction than those coated with PAA or PPEGMA homopolymers. Interestingly, those containing PAA (e.g., PAA and PAA-co-PPEGMA polymers) exhibited good reusability for the 4NP reduction with a slight decrease in their catalytic performance after 26 cycles. This indicates the important role of carboxyl groups in PAA in maintaining high tolerance after multiple uses.</p><h3>Graphical abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-023-03918-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the synthesis of magnetite nanoparticles (MNP) coated with poly(poly(ethylene glycol) methacrylate) (PPEGMA) and/or poly(acrylic acid) (PAA) to anchor palladium nanoparticles (Pd) for their application as recyclable catalysts in the reduction of 4-nitrophenol (4NP). It was hypothesized that the abundance of oxygen atoms in PPEGMA enabled coordination with the Pd and provided good water dispersibility of the nanocomposites, while anionic PAA stabilized Pd and reduced the catalyst aggregation through electrostatic repulsion. Three different polymer coatings on MNP (PAA, PPEGMA, and PAA-co-PPEGMA polymers) were investigated to assess their influence on both the catalytic activity and reusability of the catalysts. Transmission electron microscopy (TEM) analysis indicated the distribution of spherical Pd nanoparticles (3–5 nm in diameter) and MNP (9–12 nm in diameter). Photocorrelation spectroscopy (PCS) revealed an average hydrodynamic size of the catalysts ranging from 540 to 875 nm in diameter, with a negative charge on their surface. The Pd content of the catalysts ranged from 4.30 to 6.33% w/w. The nanocomposites coated with PAA-co-PPEGMA polymers exhibited more favorable catalytic activity in the 4NP reduction than those coated with PAA or PPEGMA homopolymers. Interestingly, those containing PAA (e.g., PAA and PAA-co-PPEGMA polymers) exhibited good reusability for the 4NP reduction with a slight decrease in their catalytic performance after 26 cycles. This indicates the important role of carboxyl groups in PAA in maintaining high tolerance after multiple uses.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.