Priority list of potential endocrine-disrupting chemicals in food chemical contaminants: a docking study and in vitro/epidemiological evidence integration.
J Ren, T Jin, R Li, Y Y Zhong, Y X Xuan, Y L Wang, W Yao, S L Yu, J T Yuan
{"title":"Priority list of potential endocrine-disrupting chemicals in food chemical contaminants: a docking study and in vitro/epidemiological evidence integration.","authors":"J Ren, T Jin, R Li, Y Y Zhong, Y X Xuan, Y L Wang, W Yao, S L Yu, J T Yuan","doi":"10.1080/1062936X.2023.2269855","DOIUrl":null,"url":null,"abstract":"<p><p>Diet is an important exposure route of endocrine-disrupting chemicals (EDCs), but many unfiltered potential EDCs remain in food. The in silico prediction of EDCs is a popular method for preliminary screening. Potential EDCs in food were screened using Endocrine Disruptome, an open-source platform for inverse docking, to predict the binding probabilities of 587 food chemical contaminants with 18 human nuclear hormone receptor (NHR) conformations. In total, 25 contaminants were bound to multiple NHRs such as oestrogen receptor α/β and androgen receptor. These 25 compounds mainly include pesticides and per- and polyfluoroalkyl substances (PFASs). The prediction results were validated with the in vitro data. The structural features and the crucial amino acid residues of the four NHRs were also validated based on previous literature. The findings indicate that the screening has good prediction efficiency. In addition, the epidemic evidence about endocrine interference of PFASs in food on children was further validated through this screening. This study provides preliminary screening results for EDCs in food and a priority list for in vitro and in vivo research.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"34 10","pages":"847-866"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2023.2269855","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Diet is an important exposure route of endocrine-disrupting chemicals (EDCs), but many unfiltered potential EDCs remain in food. The in silico prediction of EDCs is a popular method for preliminary screening. Potential EDCs in food were screened using Endocrine Disruptome, an open-source platform for inverse docking, to predict the binding probabilities of 587 food chemical contaminants with 18 human nuclear hormone receptor (NHR) conformations. In total, 25 contaminants were bound to multiple NHRs such as oestrogen receptor α/β and androgen receptor. These 25 compounds mainly include pesticides and per- and polyfluoroalkyl substances (PFASs). The prediction results were validated with the in vitro data. The structural features and the crucial amino acid residues of the four NHRs were also validated based on previous literature. The findings indicate that the screening has good prediction efficiency. In addition, the epidemic evidence about endocrine interference of PFASs in food on children was further validated through this screening. This study provides preliminary screening results for EDCs in food and a priority list for in vitro and in vivo research.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.