{"title":"Design and Pharmacophore Study of Triazole Analogues as Aromatase Inhibitors.","authors":"Laxmi Banjare","doi":"10.2174/0118715206265278231026101739","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In current scenario breast cancer measured as one of the dangerous health issues. An effective therapeutic class of drug known as aromatase inhibitors (AIs) is dominant against estrogen receptorpositive breast cancer. However, there is an urgent need to create target-specific AIs with better anti-breast cancer profiles due to the increased toxicity and adverse effects related to currently existing anti-breast cancer drugs.</p><p><strong>Objectives: </strong>In the present study, we have designed of 100 novel tiazole analogues as aromatase inhibitors their pharmacophoric features were explored.</p><p><strong>Method: </strong>Molecular docking was applied to a series of 4-substituted-1, 2, 3-triazoles containing letrozole for their aromatase inhibitory effects. The aromatase inhibitory activity of the compound in a series varies in the range of (IC<sub>50</sub> = 0.008-31.26 μM). A hydrogen atom positioned at R1 of the triazole ring in compound (01) was responsible for the most potent compound (IC<sub>50</sub> = 0.008 μM) in the series of 28 compounds as compared to letrozole. The self-organizing molecular field study was used to assess the molecular characteristics and biological activities of the compounds. The four models were developed using PLS and MLR methods. The PLS method was good for statistical analysis. The letrozole scaffold-based 100 compounds were designed by selecting an effective pharmacophore responsible for aromatase inhibitory activity. The designed compound was placed on the previous model as a test set, and its IC<sub>50</sub> values were calculated.</p><p><strong>Result: </strong>Hydrogen bonds were established between the potent molecule (01) and the essential residues Met 374 and Arg 115, which were responsible for the aromatase-inhibiting action. Cross-validated q2 (0.6349) & noncross- validated r2 (0.7163) were discovered in the statistical findings as having reliable predictive power. Among 100 designed compounds, seven compounds showed good aromatase inhibitory activities.</p><p><strong>Conclusion: </strong>The additional final SOMFA model created for the interactions between the aromatase and the triazole inhibitors may be helpful for future modification and enhancement of the inhibitors of this crucial enzyme.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":"288-303"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206265278231026101739","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: In current scenario breast cancer measured as one of the dangerous health issues. An effective therapeutic class of drug known as aromatase inhibitors (AIs) is dominant against estrogen receptorpositive breast cancer. However, there is an urgent need to create target-specific AIs with better anti-breast cancer profiles due to the increased toxicity and adverse effects related to currently existing anti-breast cancer drugs.
Objectives: In the present study, we have designed of 100 novel tiazole analogues as aromatase inhibitors their pharmacophoric features were explored.
Method: Molecular docking was applied to a series of 4-substituted-1, 2, 3-triazoles containing letrozole for their aromatase inhibitory effects. The aromatase inhibitory activity of the compound in a series varies in the range of (IC50 = 0.008-31.26 μM). A hydrogen atom positioned at R1 of the triazole ring in compound (01) was responsible for the most potent compound (IC50 = 0.008 μM) in the series of 28 compounds as compared to letrozole. The self-organizing molecular field study was used to assess the molecular characteristics and biological activities of the compounds. The four models were developed using PLS and MLR methods. The PLS method was good for statistical analysis. The letrozole scaffold-based 100 compounds were designed by selecting an effective pharmacophore responsible for aromatase inhibitory activity. The designed compound was placed on the previous model as a test set, and its IC50 values were calculated.
Result: Hydrogen bonds were established between the potent molecule (01) and the essential residues Met 374 and Arg 115, which were responsible for the aromatase-inhibiting action. Cross-validated q2 (0.6349) & noncross- validated r2 (0.7163) were discovered in the statistical findings as having reliable predictive power. Among 100 designed compounds, seven compounds showed good aromatase inhibitory activities.
Conclusion: The additional final SOMFA model created for the interactions between the aromatase and the triazole inhibitors may be helpful for future modification and enhancement of the inhibitors of this crucial enzyme.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.