Markku Miettinen, Zied Abdullaev, Rust Turakulov, Martha Quezado, Alejandro Luiña Contreras, Christian A Curcio, Janusz Rys, Malgorzata Chlopek, Jerzy Lasota, Kenneth D Aldape
{"title":"Assessment of The Utility of The Sarcoma DNA Methylation Classifier In Surgical Pathology.","authors":"Markku Miettinen, Zied Abdullaev, Rust Turakulov, Martha Quezado, Alejandro Luiña Contreras, Christian A Curcio, Janusz Rys, Malgorzata Chlopek, Jerzy Lasota, Kenneth D Aldape","doi":"10.1097/PAS.0000000000002138","DOIUrl":null,"url":null,"abstract":"<p><p>Diagnostic classification of soft tissue tumors is based on histology, immunohistochemistry, genetic findings, and radiologic and clinical correlations. Recently, a sarcoma DNA methylation classifier was developed, covering 62 soft tissue and bone tumor entities. The classifier is based on large-scale analysis of methylation sites across the genome. It includes DNA copy number analysis and determines O 6 methylguanine DNA methyl-transferase methylation status. In this study, we evaluated 619 well-studied soft tissue and bone tumors with the sarcoma classifier. Problem cases and typical examples of different entities were included. The classifier had high sensitivity and specificity for fusion sarcomas: Ewing, synovial, CIC -rearranged, and BCOR -rearranged. It also performed well for leiomyosarcoma, malignant peripheral nerve sheath tumors (MPNST), and malignant vascular tumors. There was low sensitivity for diagnoses of desmoid fibromatosis, neurofibroma, and schwannoma. Low specificity of matches was observed for angiomatoid fibrous histiocytoma, inflammatory myofibroblastic tumor, Langerhans histiocytosis, schwannoma, undifferentiated sarcoma, and well-differentiated/dedifferentiated liposarcoma. Diagnosis of lipomatous tumors was greatly assisted by the detection of MDM2 amplification and RB1 loss in the copy plot. The classifier helped to establish diagnoses for KIT-negative gastrointestinal stromal tumors, MPNSTs with unusual immunophenotypes, and undifferentiated melanomas. O 6 methylguanine DNA methyl-transferase methylation was infrequent and most common in melanomas (35%), MPNSTs (11%), and undifferentiated sarcomas (11%). The Sarcoma Methylation Classifier will likely evolve with the addition of new entities and refinement of the present methylation classes. The classifier may also help to define new entities and give new insight into the interrelationships of sarcomas.</p>","PeriodicalId":7772,"journal":{"name":"American Journal of Surgical Pathology","volume":" ","pages":"112-122"},"PeriodicalIF":4.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10842611/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Surgical Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PAS.0000000000002138","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diagnostic classification of soft tissue tumors is based on histology, immunohistochemistry, genetic findings, and radiologic and clinical correlations. Recently, a sarcoma DNA methylation classifier was developed, covering 62 soft tissue and bone tumor entities. The classifier is based on large-scale analysis of methylation sites across the genome. It includes DNA copy number analysis and determines O 6 methylguanine DNA methyl-transferase methylation status. In this study, we evaluated 619 well-studied soft tissue and bone tumors with the sarcoma classifier. Problem cases and typical examples of different entities were included. The classifier had high sensitivity and specificity for fusion sarcomas: Ewing, synovial, CIC -rearranged, and BCOR -rearranged. It also performed well for leiomyosarcoma, malignant peripheral nerve sheath tumors (MPNST), and malignant vascular tumors. There was low sensitivity for diagnoses of desmoid fibromatosis, neurofibroma, and schwannoma. Low specificity of matches was observed for angiomatoid fibrous histiocytoma, inflammatory myofibroblastic tumor, Langerhans histiocytosis, schwannoma, undifferentiated sarcoma, and well-differentiated/dedifferentiated liposarcoma. Diagnosis of lipomatous tumors was greatly assisted by the detection of MDM2 amplification and RB1 loss in the copy plot. The classifier helped to establish diagnoses for KIT-negative gastrointestinal stromal tumors, MPNSTs with unusual immunophenotypes, and undifferentiated melanomas. O 6 methylguanine DNA methyl-transferase methylation was infrequent and most common in melanomas (35%), MPNSTs (11%), and undifferentiated sarcomas (11%). The Sarcoma Methylation Classifier will likely evolve with the addition of new entities and refinement of the present methylation classes. The classifier may also help to define new entities and give new insight into the interrelationships of sarcomas.
期刊介绍:
The American Journal of Surgical Pathology has achieved worldwide recognition for its outstanding coverage of the state of the art in human surgical pathology. In each monthly issue, experts present original articles, review articles, detailed case reports, and special features, enhanced by superb illustrations. Coverage encompasses technical methods, diagnostic aids, and frozen-section diagnosis, in addition to detailed pathologic studies of a wide range of disease entities.
Official Journal of The Arthur Purdy Stout Society of Surgical Pathologists and The Gastrointestinal Pathology Society.