Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics.

Q3 Physics and Astronomy
Magnetic resonance (Gottingen, Germany) Pub Date : 2021-05-11 eCollection Date: 2021-01-01 DOI:10.5194/mr-2-291-2021
György Pintér, Katharina F Hohmann, J Tassilo Grün, Julia Wirmer-Bartoschek, Clemens Glaubitz, Boris Fürtig, Harald Schwalbe
{"title":"Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics.","authors":"György Pintér,&nbsp;Katharina F Hohmann,&nbsp;J Tassilo Grün,&nbsp;Julia Wirmer-Bartoschek,&nbsp;Clemens Glaubitz,&nbsp;Boris Fürtig,&nbsp;Harald Schwalbe","doi":"10.5194/mr-2-291-2021","DOIUrl":null,"url":null,"abstract":"<p><p>The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.</p>","PeriodicalId":93333,"journal":{"name":"Magnetic resonance (Gottingen, Germany)","volume":"2 1","pages":"291-320"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539803/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance (Gottingen, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/mr-2-291-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 4

Abstract

The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.

Abstract Image

Abstract Image

Abstract Image

实时核磁共振波谱在生物分子动力学和动力学研究中的应用。
综述了核磁共振波谱在蛋白质、RNA和DNA的折叠、重折叠和聚集动力学研究中的应用。时间分辨NMR实验可以以可逆或不可逆的方式进行。特别地,不可逆折叠实验对(i)由于时间限制的信噪比和(ii)折叠步骤的同步提出了很大的要求。因此,这篇文章讨论了信噪比增加方法的应用,包括动态核极化、超极化和光CIDNP在时间分辨NMR研究中的应用。此外,综述了从压力和温度跳跃、光诱导到快速混合以诱导引发折叠所需的快速非平衡条件的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信