diplo-locus: A lightweight toolkit for inference and simulation of time-series genetic data under general diploid selection.

Xiaoheng Cheng, Matthias Steinrücken
{"title":"diplo-locus: A lightweight toolkit for inference and simulation of time-series genetic data under general diploid selection.","authors":"Xiaoheng Cheng, Matthias Steinrücken","doi":"10.1101/2023.10.12.562101","DOIUrl":null,"url":null,"abstract":"<p><p>Whole-genome time-series allele frequency data are becoming more prevalent as ancient DNA (aDNA) sequences and data from evolve-and-resequence (E&R) experiments are generated at a rapid pace. Such data presents unprecedented opportunities to elucidate the dynamics of genetic variation under selection. However, despite many methods to infer parameters of selection models from allele frequency trajectories available in the literature, few provide user-friendly implementations for large-scale empirical applications. Here, we present diplo-locus, an open-source Python package that provides functionality to simulate and perform inference from time-series data under the Wright-Fisher diffusion with general diploid selection. The package includes Python modules as well as command-line tools and is available at: https://github.com/steinrue/diplo_locus.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614779/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.10.12.562101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Whole-genome time-series allele frequency data are becoming more prevalent as ancient DNA (aDNA) sequences and data from evolve-and-resequence (E&R) experiments are generated at a rapid pace. Such data presents unprecedented opportunities to elucidate the dynamics of genetic variation under selection. However, despite many methods to infer parameters of selection models from allele frequency trajectories available in the literature, few provide user-friendly implementations for large-scale empirical applications. Here, we present diplo-locus, an open-source Python package that provides functionality to simulate and perform inference from time-series data under the Wright-Fisher diffusion with general diploid selection. The package includes Python modules as well as command-line tools and is available at: https://github.com/steinrue/diplo_locus.

二倍体基因座:一个轻量级的工具包,用于推断和模拟一般二倍体选择下的时间序列遗传数据。
摘要:随着古代DNA(aDNA)序列和进化与重测序(E&R)实验的数据快速生成,全基因组时间序列等位基因频率数据变得越来越普遍。这些数据为阐明适应性遗传变异的动力学提供了前所未有的机会。然而,尽管文献中有许多从等位基因频率轨迹推断选择模型参数的方法,但很少有方法为大规模的经验应用提供用户友好的实现。在这里,我们介绍了diplo locus,这是一个开源的Python包,它提供了在具有一般二倍体选择的Wright Fisher扩散下模拟和执行时间序列推断的功能。该包包括Python模块以及命令行工具。可用性:Python包和命令行工具可在以下位置浏览:https://github.com/steinrue/diplo_locus或https://pypi.org/project/diplo-locus/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信