Kensuke Kitsugi, Hidenao Noritake, Moe Matsumoto, Tomohiko Hanaoka, Masahiro Umemura, Maho Yamashita, Shingo Takatori, Jun Ito, Kazuyoshi Ohta, Takeshi Chida, Barbara Ulmasov, Brent A Neuschwander-Tetri, Takafumi Suda, Kazuhito Kawata
{"title":"Inhibition of integrin binding to ligand arg-gly-asp motif induces AKT-mediated cellular senescence in hepatic stellate cells.","authors":"Kensuke Kitsugi, Hidenao Noritake, Moe Matsumoto, Tomohiko Hanaoka, Masahiro Umemura, Maho Yamashita, Shingo Takatori, Jun Ito, Kazuyoshi Ohta, Takeshi Chida, Barbara Ulmasov, Brent A Neuschwander-Tetri, Takafumi Suda, Kazuhito Kawata","doi":"10.1007/s11010-023-04883-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background & aims: </strong>Hepatic stellate cells (HSCs) play an essential role in liver fibrogenesis. The induction of cellular senescence has been reported to inhibit HSC activation. Previously, we demonstrated that CWHM12, a small molecule arginine-glycine-aspartic acid (RGD) peptidomimetic compound, inhibits HSC activation. This study investigated whether the inhibitory effects of CWHM12 on HSCs affected cellular senescence.</p><p><strong>Methods: </strong>The immortalized human HSC lines, LX-2 and TWNT-1, were used to evaluate the effects of CWHM12 on cellular senescence via the disruption of RGD-mediated binding to integrins.</p><p><strong>Results: </strong>CWHM12 induces cell cycle arrest, senescence-associated beta-galactosidase activity, acquisition of senescence-associated secretory phenotype (SASP), and expression of senescence-associated proteins in HSCs. Further experiments revealed that the phosphorylation of AKT and murine double minute 2 (MDM2) was involved in the effects of CWHM12, and the inhibition of AKT phosphorylation reversed these effects of CWHM12 on HSCs.</p><p><strong>Conclusions: </strong>Pharmacological inhibition of RGD-mediated integrin binding induces senescence in activated HSCs.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"2697-2710"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-023-04883-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background & aims: Hepatic stellate cells (HSCs) play an essential role in liver fibrogenesis. The induction of cellular senescence has been reported to inhibit HSC activation. Previously, we demonstrated that CWHM12, a small molecule arginine-glycine-aspartic acid (RGD) peptidomimetic compound, inhibits HSC activation. This study investigated whether the inhibitory effects of CWHM12 on HSCs affected cellular senescence.
Methods: The immortalized human HSC lines, LX-2 and TWNT-1, were used to evaluate the effects of CWHM12 on cellular senescence via the disruption of RGD-mediated binding to integrins.
Results: CWHM12 induces cell cycle arrest, senescence-associated beta-galactosidase activity, acquisition of senescence-associated secretory phenotype (SASP), and expression of senescence-associated proteins in HSCs. Further experiments revealed that the phosphorylation of AKT and murine double minute 2 (MDM2) was involved in the effects of CWHM12, and the inhibition of AKT phosphorylation reversed these effects of CWHM12 on HSCs.
Conclusions: Pharmacological inhibition of RGD-mediated integrin binding induces senescence in activated HSCs.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.