T. Mori, Takayuki Kobayashi, F. Mishima, Y. Akiyama, S. Nishijima
{"title":"Study of the separation method of structural isomer using Magneto-Archimedes method","authors":"T. Mori, Takayuki Kobayashi, F. Mishima, Y. Akiyama, S. Nishijima","doi":"10.9714/PSAC.2016.18.1.014","DOIUrl":null,"url":null,"abstract":"Abstract Organic compounds have a problem that the separation of structural isomer in the preparation process requires high energy consumption. This study proposes a new separation method of structural isomer using Magneto- Archimedes method. Firstly, the levitation height of 1, 6-DDA and 1, 10-DDA was respectively calculated by simulation of the forces acting on the particles under magnetic field, and it was indicated that they could be separated by the difference of levitation height. To confirm the phenomenon experimentally, white powders of 1, 6-DDA and 1, 10-DDA were formed into pellets, and were soaked in manganese chloride solution. Then the solution was put on the center of the cryostat of HTS bulk magnet (maximum magnetic flux density is 3T). As a result, it was confirmed that the separation of structural isomer by difference of levitation height could be possible. Keywords : Magnetic Separation, Magneto-Archimedes method, Recycle * Corresponding author: nishijima@see.eng.osaka-u.ac.jp","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"18 1","pages":"14-18"},"PeriodicalIF":0.2000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Superconductivity and Cryogenics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9714/PSAC.2016.18.1.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Organic compounds have a problem that the separation of structural isomer in the preparation process requires high energy consumption. This study proposes a new separation method of structural isomer using Magneto- Archimedes method. Firstly, the levitation height of 1, 6-DDA and 1, 10-DDA was respectively calculated by simulation of the forces acting on the particles under magnetic field, and it was indicated that they could be separated by the difference of levitation height. To confirm the phenomenon experimentally, white powders of 1, 6-DDA and 1, 10-DDA were formed into pellets, and were soaked in manganese chloride solution. Then the solution was put on the center of the cryostat of HTS bulk magnet (maximum magnetic flux density is 3T). As a result, it was confirmed that the separation of structural isomer by difference of levitation height could be possible. Keywords : Magnetic Separation, Magneto-Archimedes method, Recycle * Corresponding author: nishijima@see.eng.osaka-u.ac.jp
期刊介绍:
Progress in Superconductivity and Cryogenics is the official publication of The Korea Institute of Applied Superconductivity and Cryogenics and the Korean Superconductivity Society. It was launched in 1999, and accepts original research articles and review papers on research on superconductivity and related fields of physics, electronic devices, materials science, large-scale applications for magnets, power and energy, and cryogenics. The Journal is published quarterly in March, June, September, and December each year. Supplemental issues are published occasionally. The official title of the journal is ''Progress in Superconductivity and Cryogenics'' and the abbreviated title is ''Prog. Supercond. Cryog.'' All submitted manuscripts are peer-reviewed by two reviewers. The text must be written in English. All the articles in this journal are KCI and SCOPUS as of 2015. The URL address of the journal is http://psac.kisac.org where full text is available. This work was supported by the Korean Federation of Science and Technology Societies grant funded by the Korea government.