Zhan Zhang, Shaoqing Wei, Sangjin Lee, H. Jo, Do Gyun Kim, Jongwon Kim
{"title":"Harmonic analysis and field quality improvement of an HTS quadrupole magnet for a heavy ion accelerator","authors":"Zhan Zhang, Shaoqing Wei, Sangjin Lee, H. Jo, Do Gyun Kim, Jongwon Kim","doi":"10.9714/PSAC.2016.18.2.021","DOIUrl":null,"url":null,"abstract":"In recent years, the iron-dominated high-temperature superconductor (HTS) quadrupole magnets are being developed for heavy ion accelerators. Field analyses for iron-dominated quadrupole magnets were based on the normal-conducting (NC) quadrupole magnet early in the development for accelerators. Some conclusions are still in use today. However, the magnetic field of iron-dominated HTS quadrupole magnets cannot fully follow these conclusions. This study established an HTS quadrupole magnet model and an NC quadrupole magnet model, respectively. The harmonic characteristics of two magnets were analyzed and compared. According to the comparison, the conventional iron-dominated quadrupole magnets can be designed for maximum field gradient; the HTS quadrupole magnet, however, should be considered with varying field gradient. Finally, the HTS quadrupole magnet was designed for the changing field gradient. The field quality of the design was improved comparing with the result of the previous study. The new design for the HTS quadrupole magnet has been suggested.","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"75 1","pages":"21-24"},"PeriodicalIF":0.2000,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Superconductivity and Cryogenics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9714/PSAC.2016.18.2.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 7
Abstract
In recent years, the iron-dominated high-temperature superconductor (HTS) quadrupole magnets are being developed for heavy ion accelerators. Field analyses for iron-dominated quadrupole magnets were based on the normal-conducting (NC) quadrupole magnet early in the development for accelerators. Some conclusions are still in use today. However, the magnetic field of iron-dominated HTS quadrupole magnets cannot fully follow these conclusions. This study established an HTS quadrupole magnet model and an NC quadrupole magnet model, respectively. The harmonic characteristics of two magnets were analyzed and compared. According to the comparison, the conventional iron-dominated quadrupole magnets can be designed for maximum field gradient; the HTS quadrupole magnet, however, should be considered with varying field gradient. Finally, the HTS quadrupole magnet was designed for the changing field gradient. The field quality of the design was improved comparing with the result of the previous study. The new design for the HTS quadrupole magnet has been suggested.
期刊介绍:
Progress in Superconductivity and Cryogenics is the official publication of The Korea Institute of Applied Superconductivity and Cryogenics and the Korean Superconductivity Society. It was launched in 1999, and accepts original research articles and review papers on research on superconductivity and related fields of physics, electronic devices, materials science, large-scale applications for magnets, power and energy, and cryogenics. The Journal is published quarterly in March, June, September, and December each year. Supplemental issues are published occasionally. The official title of the journal is ''Progress in Superconductivity and Cryogenics'' and the abbreviated title is ''Prog. Supercond. Cryog.'' All submitted manuscripts are peer-reviewed by two reviewers. The text must be written in English. All the articles in this journal are KCI and SCOPUS as of 2015. The URL address of the journal is http://psac.kisac.org where full text is available. This work was supported by the Korean Federation of Science and Technology Societies grant funded by the Korea government.