Applying feature normalization based on pole filtering to short-utterance speech recognition using deep neural network

IF 0.2 Q4 ACOUSTICS
J. Han, M. Kim, H. S. Kim
{"title":"Applying feature normalization based on pole filtering to short-utterance speech recognition using deep neural network","authors":"J. Han, M. Kim, H. S. Kim","doi":"10.7776/ASK.2020.39.1.064","DOIUrl":null,"url":null,"abstract":"In a conventional speech recognition system using Gaussian Mixture Model-Hidden Markov Model (GMM-HMM), the cepstral feature normalization method based on pole filtering was effective in improving the performance of recognition of short utterances in noisy environments. In this paper, the usefulness of this method for the state-of-the-art speech recognition system using Deep Neural Network (DNN) is examined. Experimental results on AURORA 2 DB show that the cepstral mean and variance normalization based on pole filtering improves the recognition performance of very short utterances compared to that without pole filtering, especially when there is a large mismatch between the training and test conditions.","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":"39 1","pages":"64-68"},"PeriodicalIF":0.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2020.39.1.064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a conventional speech recognition system using Gaussian Mixture Model-Hidden Markov Model (GMM-HMM), the cepstral feature normalization method based on pole filtering was effective in improving the performance of recognition of short utterances in noisy environments. In this paper, the usefulness of this method for the state-of-the-art speech recognition system using Deep Neural Network (DNN) is examined. Experimental results on AURORA 2 DB show that the cepstral mean and variance normalization based on pole filtering improves the recognition performance of very short utterances compared to that without pole filtering, especially when there is a large mismatch between the training and test conditions.
基于极点滤波的特征归一化在深度神经网络短话语语音识别中的应用
在基于高斯混合模型-隐马尔可夫模型(GMM-HMM)的传统语音识别系统中,基于极点滤波的倒谱特征归一化方法可以有效地提高噪声环境下短话语的识别性能。在本文中,研究了该方法在使用深度神经网络(DNN)的最新语音识别系统中的实用性。在AURORA 2db上的实验结果表明,基于极点滤波的倒谱均值和方差归一化方法在训练条件和测试条件不匹配较大的情况下,对极短语音的识别性能明显优于无极点滤波的归一化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
50.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信