J. Ahn, Hyeon‑Deok Cho, Donghoon Shin, Taek-ik Kwon, Gwangtae Kim
{"title":"LOFAR/DEMON grams compression method for passive sonars","authors":"J. Ahn, Hyeon‑Deok Cho, Donghoon Shin, Taek-ik Kwon, Gwangtae Kim","doi":"10.7776/ASK.2020.39.1.038","DOIUrl":null,"url":null,"abstract":"LOw Frequency Analysis Recording (LOFAR) and Demodulation of Envelop Modulation On Noise (DEMON) grams are bearing-time-frequency plots of underwater acoustic signals, to visualize features for passive sonar. Those grams are characterized by tonal components, for which conventional data coding methods are not suitable. In this work, a novel LOFAR/DEMON gram compression algorithm based on binary map and prediction methods is proposed. We first generate a binary map, from which prediction for each frequency bin is determined, and then divide a frame into several macro blocks. For each macro block, we apply intra and inter prediction modes and compute residuals. Then, we perform the prediction of available bins in the binary map and quantize residuals for entropy coding. By transmitting the binary map and prediction modes, the decoder can reconstructs grams using the same process. Simulation results show that the proposed algorithm provides significantly better compression performance on LOFAR and DEMON grams than conventional data coding methods.","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2020.39.1.038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
LOw Frequency Analysis Recording (LOFAR) and Demodulation of Envelop Modulation On Noise (DEMON) grams are bearing-time-frequency plots of underwater acoustic signals, to visualize features for passive sonar. Those grams are characterized by tonal components, for which conventional data coding methods are not suitable. In this work, a novel LOFAR/DEMON gram compression algorithm based on binary map and prediction methods is proposed. We first generate a binary map, from which prediction for each frequency bin is determined, and then divide a frame into several macro blocks. For each macro block, we apply intra and inter prediction modes and compute residuals. Then, we perform the prediction of available bins in the binary map and quantize residuals for entropy coding. By transmitting the binary map and prediction modes, the decoder can reconstructs grams using the same process. Simulation results show that the proposed algorithm provides significantly better compression performance on LOFAR and DEMON grams than conventional data coding methods.