Maximal Haagerup subalgebras in L(Z2⋊SL2(Z))

IF 0.7 4区 数学 Q2 MATHEMATICS
Yongle Jiang
{"title":"Maximal Haagerup subalgebras in L(Z2⋊SL2(Z))","authors":"Yongle Jiang","doi":"10.7900/jot.2020mar09.2282","DOIUrl":null,"url":null,"abstract":"We prove that L(SL2(k)) is a maximal Haagerup--von Neumann subalgebra in L(k2⋊SL2(k)) for k=Q and k=Z. The key step for the proof is a complete description of all intermediate von Neumann subalgebras between L(SL2(k)) and L∞(Y)⋊SL2(k), where SL2(k)↷Y denotes the quotient of the algebraic action SL2(k)↷ˆk2 by modding out the relation ϕ∼ϕ′, where ϕ, ϕ′∈ˆk2 and ϕ′(x,y):=ϕ(−x,−y) for all (x,y)∈k2. As a by-product, we show L(PSL2(Q)) is a maximal von Neumann subalgebra in L∞(Y)⋊PSL2(Q); in particular, PSL2(Q)↷Y is a prime action.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2020mar09.2282","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We prove that L(SL2(k)) is a maximal Haagerup--von Neumann subalgebra in L(k2⋊SL2(k)) for k=Q and k=Z. The key step for the proof is a complete description of all intermediate von Neumann subalgebras between L(SL2(k)) and L∞(Y)⋊SL2(k), where SL2(k)↷Y denotes the quotient of the algebraic action SL2(k)↷ˆk2 by modding out the relation ϕ∼ϕ′, where ϕ, ϕ′∈ˆk2 and ϕ′(x,y):=ϕ(−x,−y) for all (x,y)∈k2. As a by-product, we show L(PSL2(Q)) is a maximal von Neumann subalgebra in L∞(Y)⋊PSL2(Q); in particular, PSL2(Q)↷Y is a prime action.
L(Z2) × SL2(Z)中的极大Haagerup子代数
证明了当k=Q和k=Z时,L(SL2(k))是L(k2 SL2(k))中的极大Haagerup—von Neumann子代数。证明的关键步骤是对L(SL2(k))和L∞(Y) SL2(k)之间的所有中间von Neumann子代数的完整描述,其中SL2(k)↷Y表示代数作用SL2(k)↷k2的商,通过对关系φ ~ φ '进行建模,其中φ, φ '∈k2和φ ' (x, Y):= φ(−x,−Y)对于所有(x, Y)∈k2。作为副产物,我们证明了L(PSL2(Q))是L∞(Y)上的极大von Neumann子代数;特别地,PSL2(Q)↷Y是一个初始作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信