The first eigencurve for a Neumann boundary problem involving p-Laplacian with essentially bounded weights

IF 1 Q1 MATHEMATICS
Ahmed Sanhaji, A. Dakkak, M. Moussaoui
{"title":"The first eigencurve for a Neumann boundary problem involving p-Laplacian with essentially bounded weights","authors":"Ahmed Sanhaji, A. Dakkak, M. Moussaoui","doi":"10.7494/opmath.2023.43.4.559","DOIUrl":null,"url":null,"abstract":"This article is intended to prove the existence and uniqueness of the first eigencurve, for a homogeneous Neumann problem with singular weights associated with the equation \\[-\\Delta_{p} u=\\alpha m_{1}|u|^{p-2}u+\\beta m_{2}|u|^{p-2}u\\] in a bounded domain \\(\\Omega \\subset \\mathbb{R}^{N}\\). We then establish many properties of this eigencurve, particularly the continuity, variational characterization, asymptotic behavior, concavity and the differentiability.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.4.559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article is intended to prove the existence and uniqueness of the first eigencurve, for a homogeneous Neumann problem with singular weights associated with the equation \[-\Delta_{p} u=\alpha m_{1}|u|^{p-2}u+\beta m_{2}|u|^{p-2}u\] in a bounded domain \(\Omega \subset \mathbb{R}^{N}\). We then establish many properties of this eigencurve, particularly the continuity, variational characterization, asymptotic behavior, concavity and the differentiability.
具有基本有界权值的p-拉普拉斯算子的Neumann边界问题的第一特征曲线
本文旨在证明有界域\(\Omega \subset \mathbb{R}^{N}\)上具有奇异权值的方程\[-\Delta_{p} u=\alpha m_{1}|u|^{p-2}u+\beta m_{2}|u|^{p-2}u\]齐次Neumann问题的第一特征曲线的存在性和唯一性。然后,我们建立了该特征曲线的许多性质,特别是连续性、变分特征、渐近性、凹性和可微性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信