Axiomatic characterizations of Ptolemaic and chordal graphs

IF 1 Q1 MATHEMATICS
M. Changat, Lekshmi Kamal K. Sheela, Prasanth G. Narasimha-Shenoi
{"title":"Axiomatic characterizations of Ptolemaic and chordal graphs","authors":"M. Changat, Lekshmi Kamal K. Sheela, Prasanth G. Narasimha-Shenoi","doi":"10.7494/opmath.2023.43.3.393","DOIUrl":null,"url":null,"abstract":"The interval function and the induced path function are two well studied class of set functions of a connected graph having interesting properties and applications to convexity, metric graph theory. Both these functions can be framed as special instances of a general set function termed as a transit function defined on the Cartesian product of a non-empty set \\(V\\) to the power set of \\(V\\) satisfying the expansive, symmetric and idempotent axioms. In this paper, we propose a set of independent first order betweenness axioms on an arbitrary transit function and provide characterization of the interval function of Ptolemaic graphs and the induced path function of chordal graphs in terms of an arbitrary transit function. This in turn gives new characterizations of the Ptolemaic and chordal graphs.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.3.393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The interval function and the induced path function are two well studied class of set functions of a connected graph having interesting properties and applications to convexity, metric graph theory. Both these functions can be framed as special instances of a general set function termed as a transit function defined on the Cartesian product of a non-empty set \(V\) to the power set of \(V\) satisfying the expansive, symmetric and idempotent axioms. In this paper, we propose a set of independent first order betweenness axioms on an arbitrary transit function and provide characterization of the interval function of Ptolemaic graphs and the induced path function of chordal graphs in terms of an arbitrary transit function. This in turn gives new characterizations of the Ptolemaic and chordal graphs.
托勒密图和弦图的公理化表征
区间函数和诱导路径函数是连通图的两类集函数,它们具有有趣的性质,并在凸性和度量图理论中有广泛的应用。这两个函数都可以构成一般集合函数的特殊实例,称为传递函数,定义在非空集\(V\)到满足扩展、对称和幂等公理的幂集\(V\)的笛卡尔积上。本文在任意传递函数上给出了一组独立的一阶间性公理,并给出了托勒密图的区间函数和弦图的诱导路径函数在任意传递函数上的表征。这反过来又给出了托勒密图和弦图的新特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信