Square-root boundaries for Bessel processes and the hitting times of radial Ornstein-Uhlenbeck processes

IF 1 Q1 MATHEMATICS
Yuji Hamana
{"title":"Square-root boundaries for Bessel processes and the hitting times of radial Ornstein-Uhlenbeck processes","authors":"Yuji Hamana","doi":"10.7494/opmath.2023.43.2.145","DOIUrl":null,"url":null,"abstract":"This article deals with the first hitting times of a Bessel process to a square-root boundary. We obtain the explicit form of the distribution function of the hitting time by means of zeros of the confluent hypergeometric function with respect to the first parameter. In deducing the distribution function, the time that a radial Ornstein-Uhlenbeck process reaches a certain point is very useful and plays an important role. We also give its distribution function in the case that the starting point is closer to the origin than the arrival site.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.2.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article deals with the first hitting times of a Bessel process to a square-root boundary. We obtain the explicit form of the distribution function of the hitting time by means of zeros of the confluent hypergeometric function with respect to the first parameter. In deducing the distribution function, the time that a radial Ornstein-Uhlenbeck process reaches a certain point is very useful and plays an important role. We also give its distribution function in the case that the starting point is closer to the origin than the arrival site.
贝塞尔过程的平方根边界和径向Ornstein-Uhlenbeck过程的撞击次数
本文讨论贝塞尔过程对平方根边界的首次撞击次数。利用合流超几何函数对第一个参数的零点,得到了命中时间分布函数的显式形式。在推导分布函数时,径向Ornstein-Uhlenbeck过程到达某一点的时间是非常有用的,并且起着重要的作用。我们还给出了在起点比到达点更接近原点的情况下的分布函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信