Global attractivity of a higher order nonlinear difference equation with unimodal terms

IF 1 Q1 MATHEMATICS
Abdulaziz Almaslokh, C. Qian
{"title":"Global attractivity of a higher order nonlinear difference equation with unimodal terms","authors":"Abdulaziz Almaslokh, C. Qian","doi":"10.7494/opmath.2023.43.2.131","DOIUrl":null,"url":null,"abstract":"In the present paper, we study the asymptotic behavior of the following higher order nonlinear difference equation with unimodal terms \\[x(n+1)= ax(n)+ bx(n)g(x(n)) + cx(n-k)g(x(n-k)), \\quad n=0, 1, \\ldots,\\] where \\(a\\), \\(b\\) and \\(c\\) are constants with \\(0\\lt a\\lt 1\\), \\(0\\leq b\\lt 1\\), \\(0\\leq c \\lt 1\\) and \\(a+b+c=1\\), \\(g\\in C[[0, \\infty), [0, \\infty)]\\) is decreasing, and \\(k\\) is a positive integer. We obtain some new sufficient conditions for the global attractivity of positive solutions of the equation. Applications to some population models are also given.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.2.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we study the asymptotic behavior of the following higher order nonlinear difference equation with unimodal terms \[x(n+1)= ax(n)+ bx(n)g(x(n)) + cx(n-k)g(x(n-k)), \quad n=0, 1, \ldots,\] where \(a\), \(b\) and \(c\) are constants with \(0\lt a\lt 1\), \(0\leq b\lt 1\), \(0\leq c \lt 1\) and \(a+b+c=1\), \(g\in C[[0, \infty), [0, \infty)]\) is decreasing, and \(k\) is a positive integer. We obtain some new sufficient conditions for the global attractivity of positive solutions of the equation. Applications to some population models are also given.
具有单峰项的高阶非线性差分方程的全局吸引性
本文研究了含单峰项\[x(n+1)= ax(n)+ bx(n)g(x(n)) + cx(n-k)g(x(n-k)), \quad n=0, 1, \ldots,\]的高阶非线性差分方程的渐近行为,其中\(a\)、\(b\)和\(c\)为常数,\(0\lt a\lt 1\)、\(0\leq b\lt 1\)、\(0\leq c \lt 1\)和\(a+b+c=1\)、\(g\in C[[0, \infty), [0, \infty)]\)为递减,\(k\)为正整数。得到了该方程正解全局吸引的几个新的充分条件。并给出了在一些人口模型中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信