{"title":"Nonlinear Choquard equations on hyperbolic space","authors":"Haiyang He","doi":"10.7494/opmath.2022.42.5.691","DOIUrl":null,"url":null,"abstract":"In this paper, our purpose is to prove the existence results for the following nonlinear Choquard equation \\[-\\Delta_{\\mathbb{B}^{N}}u=\\int_{\\mathbb{B}^N}\\dfrac{|u(y)|^{p}}{|2\\sinh\\frac{\\rho(T_y(x))}{2}|^\\mu} dV_y \\cdot |u|^{p-2}u +\\lambda u\\] on the hyperbolic space \\(\\mathbb{B}^N\\), where \\(\\Delta_{\\mathbb{B}^{N}}\\) denotes the Laplace-Beltrami operator on \\(\\mathbb{B}^N\\), \\[\\sinh\\frac{\\rho(T_y(x))}{2}=\\dfrac{|T_y(x)|}{\\sqrt{1-|T_y(x)|^2}}=\\dfrac{|x-y|}{\\sqrt{(1-|x|^2)(1-|y|^2)}},\\] \\(\\lambda\\) is a real parameter, \\(0\\lt \\mu\\lt N\\), \\(1\\lt p\\leq 2_\\mu^*\\), \\(N\\geq 3\\) and \\(2_\\mu^*:=\\frac{2N-\\mu}{N-2}\\) is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.5.691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, our purpose is to prove the existence results for the following nonlinear Choquard equation \[-\Delta_{\mathbb{B}^{N}}u=\int_{\mathbb{B}^N}\dfrac{|u(y)|^{p}}{|2\sinh\frac{\rho(T_y(x))}{2}|^\mu} dV_y \cdot |u|^{p-2}u +\lambda u\] on the hyperbolic space \(\mathbb{B}^N\), where \(\Delta_{\mathbb{B}^{N}}\) denotes the Laplace-Beltrami operator on \(\mathbb{B}^N\), \[\sinh\frac{\rho(T_y(x))}{2}=\dfrac{|T_y(x)|}{\sqrt{1-|T_y(x)|^2}}=\dfrac{|x-y|}{\sqrt{(1-|x|^2)(1-|y|^2)}},\] \(\lambda\) is a real parameter, \(0\lt \mu\lt N\), \(1\lt p\leq 2_\mu^*\), \(N\geq 3\) and \(2_\mu^*:=\frac{2N-\mu}{N-2}\) is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.