Nonoscillation of damped linear differential equations with a proportional derivative controller and its application to Whittaker-Hill-type and Mathieu-type equations

IF 1 Q1 MATHEMATICS
Kazuki Ishibashi
{"title":"Nonoscillation of damped linear differential equations with a proportional derivative controller and its application to Whittaker-Hill-type and Mathieu-type equations","authors":"Kazuki Ishibashi","doi":"10.7494/opmath.2023.43.1.67","DOIUrl":null,"url":null,"abstract":"The proportional derivative (PD) controller of a differential operator is commonly referred to as the conformable derivative. In this paper, we derive a nonoscillation theorem for damped linear differential equations with a differential operator using the conformable derivative of control theory. The proof of the nonoscillation theorem utilizes the Riccati inequality corresponding to the equation considered. The provided nonoscillation theorem gives the nonoscillatory condition for a damped Euler-type differential equation with a PD controller. Moreover, the nonoscillation of the equation with a PD controller that can generalize Whittaker-Hill-type equations is also considered in this paper. The Whittaker-Hill-type equation considered in this study also includes the Mathieu-type equation. As a subtopic of this work, we consider the nonoscillation of Mathieu-type equations with a PD controller while making full use of numerical simulations.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.1.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The proportional derivative (PD) controller of a differential operator is commonly referred to as the conformable derivative. In this paper, we derive a nonoscillation theorem for damped linear differential equations with a differential operator using the conformable derivative of control theory. The proof of the nonoscillation theorem utilizes the Riccati inequality corresponding to the equation considered. The provided nonoscillation theorem gives the nonoscillatory condition for a damped Euler-type differential equation with a PD controller. Moreover, the nonoscillation of the equation with a PD controller that can generalize Whittaker-Hill-type equations is also considered in this paper. The Whittaker-Hill-type equation considered in this study also includes the Mathieu-type equation. As a subtopic of this work, we consider the nonoscillation of Mathieu-type equations with a PD controller while making full use of numerical simulations.
带比例导数控制器的阻尼线性微分方程的非振动性及其在whittaker - hill型和mathieu型方程中的应用
微分算子的比例导数(PD)控制器通常被称为适形导数。本文利用控制论的适形导数,导出了一类含微分算子的阻尼线性微分方程的非振荡定理。非振荡定理的证明利用了与所考虑的方程相对应的里卡蒂不等式。所提供的非振荡定理给出了带PD控制器的阻尼欧拉型微分方程的非振荡条件。此外,本文还考虑了具有可推广whittaker - hill型方程的PD控制器的方程的非振荡问题。本研究考虑的whittaker - hill型方程还包括mathieu型方程。作为本工作的一个子课题,我们在充分利用数值模拟的同时,考虑了带PD控制器的mathieu型方程的非振荡问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信