Properties of even order linear functional differential equations with deviating arguments of mixed type

IF 1 Q1 MATHEMATICS
J. Džurina
{"title":"Properties of even order linear functional differential equations with deviating arguments of mixed type","authors":"J. Džurina","doi":"10.7494/opmath.2022.42.5.659","DOIUrl":null,"url":null,"abstract":"This paper is concerned with oscillatory behavior of linear functional differential equations of the type \\[y^{(n)}(t)=p(t)y(\\tau(t))\\] with mixed deviating arguments which means that its both delayed and advanced parts are unbounded subset of \\((0,\\infty)\\). Our attention is oriented to the Euler type of equation, i.e. when \\(p(t)\\sim a/t^n.\\)","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.5.659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with oscillatory behavior of linear functional differential equations of the type \[y^{(n)}(t)=p(t)y(\tau(t))\] with mixed deviating arguments which means that its both delayed and advanced parts are unbounded subset of \((0,\infty)\). Our attention is oriented to the Euler type of equation, i.e. when \(p(t)\sim a/t^n.\)
混合型偏离参数的偶阶线性泛函微分方程的性质
本文研究了具有混合偏离参数的\[y^{(n)}(t)=p(t)y(\tau(t))\]型线性泛函微分方程的振荡性质,这意味着该方程的延迟部分和超前部分都是\((0,\infty)\)的无界子集。我们的注意力集中在欧拉型方程上,即当 \(p(t)\sim a/t^n.\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信