Existence of positive radial solutions to a p-Laplacian Kirchhoff type problem on the exterior of a ball

IF 1 Q1 MATHEMATICS
J. Graef, Doudja Hebboul, T. Moussaoui
{"title":"Existence of positive radial solutions to a p-Laplacian Kirchhoff type problem on the exterior of a ball","authors":"J. Graef, Doudja Hebboul, T. Moussaoui","doi":"10.7494/opmath.2023.43.1.47","DOIUrl":null,"url":null,"abstract":"In this paper the authors study the existence of positive radial solutions to the Kirchhoff type problem involving the \\(p\\)-Laplacian \\[-\\Big(a+b\\int_{\\Omega_e}|\\nabla u|^p dx\\Big)\\Delta_p u=\\lambda f\\left(|x|,u\\right),\\ x\\in \\Omega_e,\\quad u=0\\ \\text{on} \\ \\partial\\Omega_e,\\] where \\(\\lambda \\gt 0\\) is a parameter, \\(\\Omega_e = \\lbrace x\\in\\mathbb{R}^N : |x|\\gt r_0\\rbrace\\), \\(r_0\\gt 0\\), \\(N \\gt p \\gt 1\\), \\(\\Delta_p\\) is the \\(p\\)-Laplacian operator, and \\(f\\in C(\\left[ r_0, +\\infty\\right)\\times\\left[0,+\\infty\\right),\\mathbb{R})\\) is a non-decreasing function with respect to its second variable. By using the Mountain Pass Theorem, they prove the existence of positive radial solutions for small values of \\(\\lambda\\).","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.1.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper the authors study the existence of positive radial solutions to the Kirchhoff type problem involving the \(p\)-Laplacian \[-\Big(a+b\int_{\Omega_e}|\nabla u|^p dx\Big)\Delta_p u=\lambda f\left(|x|,u\right),\ x\in \Omega_e,\quad u=0\ \text{on} \ \partial\Omega_e,\] where \(\lambda \gt 0\) is a parameter, \(\Omega_e = \lbrace x\in\mathbb{R}^N : |x|\gt r_0\rbrace\), \(r_0\gt 0\), \(N \gt p \gt 1\), \(\Delta_p\) is the \(p\)-Laplacian operator, and \(f\in C(\left[ r_0, +\infty\right)\times\left[0,+\infty\right),\mathbb{R})\) is a non-decreasing function with respect to its second variable. By using the Mountain Pass Theorem, they prove the existence of positive radial solutions for small values of \(\lambda\).
球外p- laplace Kirchhoff型问题径向正解的存在性
本文研究了涉及\(p\) -Laplacian \[-\Big(a+b\int_{\Omega_e}|\nabla u|^p dx\Big)\Delta_p u=\lambda f\left(|x|,u\right),\ x\in \Omega_e,\quad u=0\ \text{on} \ \partial\Omega_e,\]的Kirchhoff型问题的正径向解的存在性,其中\(\lambda \gt 0\)是参数,\(\Omega_e = \lbrace x\in\mathbb{R}^N : |x|\gt r_0\rbrace\), \(r_0\gt 0\), \(N \gt p \gt 1\), \(\Delta_p\)是\(p\) -Laplacian算子,\(f\in C(\left[ r_0, +\infty\right)\times\left[0,+\infty\right),\mathbb{R})\)是关于其第二变量的非递减函数。利用山口定理,证明了\(\lambda\)小值时径向正解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信