Nordhaus-Gaddum bounds for upper total domination

IF 1 Q1 MATHEMATICS
T. Haynes, Michael A. Henning
{"title":"Nordhaus-Gaddum bounds for upper total domination","authors":"T. Haynes, Michael A. Henning","doi":"10.7494/opmath.2022.42.4.573","DOIUrl":null,"url":null,"abstract":"A set \\(S\\) of vertices in an isolate-free graph \\(G\\) is a total dominating set if every vertex in \\(G\\) is adjacent to a vertex in \\(S\\). A total dominating set of \\(G\\) is minimal if it contains no total dominating set of \\(G\\) as a proper subset. The upper total domination number \\(\\Gamma_t(G)\\) of \\(G\\) is the maximum cardinality of a minimal total dominating set in \\(G\\). We establish Nordhaus-Gaddum bounds involving the upper total domination numbers of a graph \\(G\\) and its complement \\(\\overline{G}\\). We prove that if \\(G\\) is a graph of order \\(n\\) such that both \\(G\\) and \\(\\overline{G}\\) are isolate-free, then \\(\\Gamma_t(G) + \\Gamma_t(\\overline{G}) \\leq n + 2\\) and \\(\\Gamma_t(G)\\Gamma_t(\\overline{G}) \\leq \\frac{1}{4}(n+2)^2\\), and these bounds are tight.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.4.573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A set \(S\) of vertices in an isolate-free graph \(G\) is a total dominating set if every vertex in \(G\) is adjacent to a vertex in \(S\). A total dominating set of \(G\) is minimal if it contains no total dominating set of \(G\) as a proper subset. The upper total domination number \(\Gamma_t(G)\) of \(G\) is the maximum cardinality of a minimal total dominating set in \(G\). We establish Nordhaus-Gaddum bounds involving the upper total domination numbers of a graph \(G\) and its complement \(\overline{G}\). We prove that if \(G\) is a graph of order \(n\) such that both \(G\) and \(\overline{G}\) are isolate-free, then \(\Gamma_t(G) + \Gamma_t(\overline{G}) \leq n + 2\) and \(\Gamma_t(G)\Gamma_t(\overline{G}) \leq \frac{1}{4}(n+2)^2\), and these bounds are tight.
上总支配的诺德豪斯-加德姆界
如果\(G\)中的每个顶点与\(S\)中的一个顶点相邻,那么无隔离图\(G\)中的顶点集\(S\)就是一个总支配集。如果不包含\(G\)作为适当子集的总支配集,则\(G\)的总支配集是最小的。\(G\)的上总支配数\(\Gamma_t(G)\)是\(G\)中最小总支配集的最大基数。我们建立了涉及图\(G\)及其补\(\overline{G}\)的上总控制数的诺德豪斯-加德姆界。我们证明了如果\(G\)是一个阶为\(n\)的图,使得\(G\)和\(\overline{G}\)都是无隔离的,那么\(\Gamma_t(G) + \Gamma_t(\overline{G}) \leq n + 2\)和\(\Gamma_t(G)\Gamma_t(\overline{G}) \leq \frac{1}{4}(n+2)^2\),并且这些界是紧的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信