Spectral properties of certain operators on the free Hilbert space \mathfrak{F}[H_{1},...,H_{N}] and the semicircular law

IF 1 Q1 MATHEMATICS
Ilwoo Cho
{"title":"Spectral properties of certain operators on the free Hilbert space \\mathfrak{F}[H_{1},...,H_{N}] and the semicircular law","authors":"Ilwoo Cho","doi":"10.7494/opmath.2021.41.6.755","DOIUrl":null,"url":null,"abstract":"In this paper, we fix \\(N\\)-many \\(l^2\\)-Hilbert spaces \\(H_k\\) whose dimensions are \\(n_{k} \\in \\mathbb{N}^{\\infty}=\\mathbb{N} \\cup \\{\\infty\\}\\), for \\(k=1,\\ldots,N\\), for \\(N \\in \\mathbb{N}\\setminus\\{1\\}\\). And then, construct a Hilbert space \\(\\mathfrak{F}=\\mathfrak{F}[H_{1},\\ldots,H_{N}]\\) induced by \\(H_{1},\\ldots,H_{N}\\), and study certain types of operators on \\(\\mathfrak{F}\\). In particular, we are interested in so-called jump-shift operators. The main results (i) characterize the spectral properties of these operators, and (ii) show how such operators affect the semicircular law induced by \\(\\bigcup^N_{k=1} \\mathcal{B}_{k}\\), where \\(\\mathcal{B}_{k}\\) are the orthonormal bases of \\(H_{k}\\), for \\(k=1,\\ldots,N\\).","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2021.41.6.755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we fix \(N\)-many \(l^2\)-Hilbert spaces \(H_k\) whose dimensions are \(n_{k} \in \mathbb{N}^{\infty}=\mathbb{N} \cup \{\infty\}\), for \(k=1,\ldots,N\), for \(N \in \mathbb{N}\setminus\{1\}\). And then, construct a Hilbert space \(\mathfrak{F}=\mathfrak{F}[H_{1},\ldots,H_{N}]\) induced by \(H_{1},\ldots,H_{N}\), and study certain types of operators on \(\mathfrak{F}\). In particular, we are interested in so-called jump-shift operators. The main results (i) characterize the spectral properties of these operators, and (ii) show how such operators affect the semicircular law induced by \(\bigcup^N_{k=1} \mathcal{B}_{k}\), where \(\mathcal{B}_{k}\) are the orthonormal bases of \(H_{k}\), for \(k=1,\ldots,N\).
自由Hilbert空间上某些算子的谱性质\mathfrak{F}[H_{1},…],H_{N}]和半圆律
在本文中,我们修正了\(N\) -多个\(l^2\) -Hilbert空间\(H_k\),其维度为\(n_{k} \in \mathbb{N}^{\infty}=\mathbb{N} \cup \{\infty\}\),对于\(k=1,\ldots,N\),对于\(N \in \mathbb{N}\setminus\{1\}\)。然后,构造由\(H_{1},\ldots,H_{N}\)引出的Hilbert空间\(\mathfrak{F}=\mathfrak{F}[H_{1},\ldots,H_{N}]\),并研究\(\mathfrak{F}\)上的若干类型算子。我们特别感兴趣的是所谓的跳移算子。主要结果(i)表征了这些算子的光谱特性,(ii)显示了这些算子如何影响\(\bigcup^N_{k=1} \mathcal{B}_{k}\)引起的半圆定律,其中\(\mathcal{B}_{k}\)是\(k=1,\ldots,N\)的\(H_{k}\)的标准正交基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信