{"title":"Monodromy invariant Hermitian forms for second order Fuchsian differential equations with four singularities","authors":"Shunya Adachi","doi":"10.7494/opmath.2022.42.3.361","DOIUrl":null,"url":null,"abstract":"We study the monodromy invariant Hermitian forms for second order Fuchsian differential equations with four singularities. The moduli space of our monodromy representations can be realized by certain affine cubic surface. In this paper we characterize the irreducible monodromies having the non-degenerate invariant Hermitian forms in terms of that cubic surface. The explicit forms of invariant Hermitian forms are also given. Our result may bring a new insight into the study of the Painlev� differential equations.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.3.361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We study the monodromy invariant Hermitian forms for second order Fuchsian differential equations with four singularities. The moduli space of our monodromy representations can be realized by certain affine cubic surface. In this paper we characterize the irreducible monodromies having the non-degenerate invariant Hermitian forms in terms of that cubic surface. The explicit forms of invariant Hermitian forms are also given. Our result may bring a new insight into the study of the Painlev� differential equations.