Ground states for fractional nonlocal equations with logarithmic nonlinearity

IF 1 Q1 MATHEMATICS
Lifeng Guo, Y. Sun, Guannan Shi
{"title":"Ground states for fractional nonlocal equations with logarithmic nonlinearity","authors":"Lifeng Guo, Y. Sun, Guannan Shi","doi":"10.7494/opmath.2022.42.2.157","DOIUrl":null,"url":null,"abstract":"In this paper, we study on the fractional nonlocal equation with the logarithmic nonlinearity formed by \\[\\begin{cases}\\mathcal{L}_{K}u(x)+u\\log|u|+|u|^{q-2}u=0, & x\\in\\Omega,\\\\ u=0, & x\\in\\mathbb{R}^{n}\\setminus\\Omega,\\end{cases}\\] where \\(2\\lt q\\lt 2^{*}_s\\), \\(L_{K}\\) is a non-local operator, \\(\\Omega\\) is an open bounded set of \\(\\mathbb{R}^{n}\\) with Lipschitz boundary. By using the fractional logarithmic Sobolev inequality and the linking theorem, we present the existence theorem of the ground state solutions for this nonlocal problem.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.2.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study on the fractional nonlocal equation with the logarithmic nonlinearity formed by \[\begin{cases}\mathcal{L}_{K}u(x)+u\log|u|+|u|^{q-2}u=0, & x\in\Omega,\\ u=0, & x\in\mathbb{R}^{n}\setminus\Omega,\end{cases}\] where \(2\lt q\lt 2^{*}_s\), \(L_{K}\) is a non-local operator, \(\Omega\) is an open bounded set of \(\mathbb{R}^{n}\) with Lipschitz boundary. By using the fractional logarithmic Sobolev inequality and the linking theorem, we present the existence theorem of the ground state solutions for this nonlocal problem.
具有对数非线性的分数阶非局部方程的基态
本文研究了分数阶非局部方程的对数非线性 \[\begin{cases}\mathcal{L}_{K}u(x)+u\log|u|+|u|^{q-2}u=0, & x\in\Omega,\\ u=0, & x\in\mathbb{R}^{n}\setminus\Omega,\end{cases}\] 在哪里 \(2\lt q\lt 2^{*}_s\), \(L_{K}\) 是一个非本地运营商, \(\Omega\) 开有界集合是 \(\mathbb{R}^{n}\) 具有利普希茨边界。利用分数对数Sobolev不等式和连接定理,给出了该非局部问题基态解的存在性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信