{"title":"Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, I","authors":"Manabu Naito","doi":"10.7494/OPMATH.2021.41.1.71","DOIUrl":null,"url":null,"abstract":"We consider the half-linear differential equation of the form \\[(p(t)|x'|^{\\alpha}\\mathrm{sgn} x')' + q(t)|x|^{\\alpha}\\mathrm{sgn} x = 0, \\quad t\\geq t_{0},\\] under the assumption \\(\\int_{t_{0}}^{\\infty}p(s)^{-1/\\alpha}ds =\\infty\\). It is shown that if a certain condition is satisfied, then the above equation has a pair of nonoscillatory solutions with specific asymptotic behavior as \\(t \\to \\infty\\).","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/OPMATH.2021.41.1.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
We consider the half-linear differential equation of the form \[(p(t)|x'|^{\alpha}\mathrm{sgn} x')' + q(t)|x|^{\alpha}\mathrm{sgn} x = 0, \quad t\geq t_{0},\] under the assumption \(\int_{t_{0}}^{\infty}p(s)^{-1/\alpha}ds =\infty\). It is shown that if a certain condition is satisfied, then the above equation has a pair of nonoscillatory solutions with specific asymptotic behavior as \(t \to \infty\).