{"title":"More on linear and metric tree maps","authors":"S. Kozerenko","doi":"10.7494/OPMATH.2021.41.1.55","DOIUrl":null,"url":null,"abstract":"We consider linear and metric self-maps on vertex sets of finite combinatorial trees. Linear maps are maps which preserve intervals between pairs of vertices whereas metric maps are maps which do not increase distances between pairs of vertices. We obtain criteria for a given linear or a metric map to be a positive (negative) under some orientation of the edges in a tree, we characterize trees which admit maps with Markov graphs being paths and prove that the converse of any partial functional digraph is isomorphic to a Markov graph for some suitable map on a tree.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/OPMATH.2021.41.1.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider linear and metric self-maps on vertex sets of finite combinatorial trees. Linear maps are maps which preserve intervals between pairs of vertices whereas metric maps are maps which do not increase distances between pairs of vertices. We obtain criteria for a given linear or a metric map to be a positive (negative) under some orientation of the edges in a tree, we characterize trees which admit maps with Markov graphs being paths and prove that the converse of any partial functional digraph is isomorphic to a Markov graph for some suitable map on a tree.