{"title":"Some existence results for a nonlocal non-isotropic problem","authors":"R. Bentifour, Sofiane El-Hadi Miri","doi":"10.7494/OPMATH.2021.41.1.5","DOIUrl":null,"url":null,"abstract":"In this paper we deal with the following problem \\[\\begin{cases}-\\sum\\limits_{i=1}^{N}\\left[ \\left( a+b\\int\\limits_{\\, \\Omega }\\left\\vert \\partial _{i}u\\right\\vert ^{p_{i}}dx\\right) \\partial _{i}\\left( \\left\\vert \\partial _{i}u\\right\\vert ^{p_{i}-2}\\partial _{i}u\\right) \\right]=\\frac{f(x)}{u^{\\gamma }}\\pm g(x)u^{q-1} & in\\ \\Omega, \\\\ u\\geq 0 & in\\ \\Omega, \\\\ u=0 & on\\ \\partial \\Omega, \\end{cases}\\] where \\(\\Omega\\) is a bounded regular domain in \\(\\mathbb{R}^{N}\\). We will assume without loss of generality that \\(1\\leq p_{1}\\leq p_{2}\\leq \\ldots\\leq p_{N}\\) and that \\(f\\) and \\(g\\) are non-negative functions belonging to a suitable Lebesgue space \\(L^{m}(\\Omega)\\), \\(1\\lt q\\lt \\overline{p}^{\\ast}\\), \\(a\\gt 0\\), \\(b\\gt 0\\) and \\(0\\lt \\gamma \\lt 1.\\)","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/OPMATH.2021.41.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper we deal with the following problem \[\begin{cases}-\sum\limits_{i=1}^{N}\left[ \left( a+b\int\limits_{\, \Omega }\left\vert \partial _{i}u\right\vert ^{p_{i}}dx\right) \partial _{i}\left( \left\vert \partial _{i}u\right\vert ^{p_{i}-2}\partial _{i}u\right) \right]=\frac{f(x)}{u^{\gamma }}\pm g(x)u^{q-1} & in\ \Omega, \\ u\geq 0 & in\ \Omega, \\ u=0 & on\ \partial \Omega, \end{cases}\] where \(\Omega\) is a bounded regular domain in \(\mathbb{R}^{N}\). We will assume without loss of generality that \(1\leq p_{1}\leq p_{2}\leq \ldots\leq p_{N}\) and that \(f\) and \(g\) are non-negative functions belonging to a suitable Lebesgue space \(L^{m}(\Omega)\), \(1\lt q\lt \overline{p}^{\ast}\), \(a\gt 0\), \(b\gt 0\) and \(0\lt \gamma \lt 1.\)