Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications

IF 1 Q1 MATHEMATICS
Abdelrachid El Amrouss, O. Hammouti
{"title":"Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications","authors":"Abdelrachid El Amrouss, O. Hammouti","doi":"10.7494/opmath.2021.41.4.489","DOIUrl":null,"url":null,"abstract":"Let \\(n\\in\\mathbb{N}^{*}\\), and \\(N\\geq n\\) be an integer. We study the spectrum of discrete linear \\(2n\\)-th order eigenvalue problems \\[\\begin{cases}\\sum_{k=0}^{n}(-1)^{k}\\Delta^{2k}u(t-k) = \\lambda u(t) ,\\quad & t\\in[1, N]_{\\mathbb{Z}}, \\\\ \\Delta^{i}u(-(n-1))=\\Delta^{i}u(N-(n-1)),\\quad & i\\in[0, 2n-1]_{\\mathbb{Z}},\\end{cases}\\] where \\(\\lambda\\) is a parameter. As an application of this spectrum result, we show the existence of a solution of discrete nonlinear \\(2n\\)-th order problems by applying the variational methods and critical point theory.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"68 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2021.41.4.489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Let \(n\in\mathbb{N}^{*}\), and \(N\geq n\) be an integer. We study the spectrum of discrete linear \(2n\)-th order eigenvalue problems \[\begin{cases}\sum_{k=0}^{n}(-1)^{k}\Delta^{2k}u(t-k) = \lambda u(t) ,\quad & t\in[1, N]_{\mathbb{Z}}, \\ \Delta^{i}u(-(n-1))=\Delta^{i}u(N-(n-1)),\quad & i\in[0, 2n-1]_{\mathbb{Z}},\end{cases}\] where \(\lambda\) is a parameter. As an application of this spectrum result, we show the existence of a solution of discrete nonlinear \(2n\)-th order problems by applying the variational methods and critical point theory.
具有周期边界条件的离散2n阶差分算子的谱及其应用
设\(n\in\mathbb{N}^{*}\)和\(N\geq n\)为整数。我们研究离散线性\(2n\) -阶特征值问题的谱\[\begin{cases}\sum_{k=0}^{n}(-1)^{k}\Delta^{2k}u(t-k) = \lambda u(t) ,\quad & t\in[1, N]_{\mathbb{Z}}, \\ \Delta^{i}u(-(n-1))=\Delta^{i}u(N-(n-1)),\quad & i\in[0, 2n-1]_{\mathbb{Z}},\end{cases}\],其中\(\lambda\)是一个参数。作为这一谱结果的应用,我们利用变分方法和临界点理论证明了离散非线性\(2n\) - 1阶问题解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信