Spatio‑Temporal Model of Extreme Rainfall Data in the Province of South Sulawesi for a Flood Early Warning System

Q3 Social Sciences
B. Bakri, Khaeryna Adam, Amran Rahim
{"title":"Spatio‑Temporal Model of Extreme Rainfall Data in the Province of South Sulawesi for a Flood Early Warning System","authors":"B. Bakri, Khaeryna Adam, Amran Rahim","doi":"10.7494/GEOM.2021.15.2.5","DOIUrl":null,"url":null,"abstract":"In this study, we model extreme rainfall to study the high rainfall events in the province of South Sulawesi, Indonesia. We investigated the effect of the El Nino South Oscillation (ENSO), Indian Ocean Dipole Mode (IOD), and Mad‐ den–Julian Oscillation (MJO) on extreme rainfall events. We also assume that events in a location are affected by events in other nearby locations. Using rain‐ fall data from the province of South Sulawesi, the results showed that extreme rainfall events are related to IOD and MJO.","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/GEOM.2021.15.2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, we model extreme rainfall to study the high rainfall events in the province of South Sulawesi, Indonesia. We investigated the effect of the El Nino South Oscillation (ENSO), Indian Ocean Dipole Mode (IOD), and Mad‐ den–Julian Oscillation (MJO) on extreme rainfall events. We also assume that events in a location are affected by events in other nearby locations. Using rain‐ fall data from the province of South Sulawesi, the results showed that extreme rainfall events are related to IOD and MJO.
洪水预警系统中南苏拉威西省极端降雨数据的时空模型
在这项研究中,我们模拟极端降雨来研究印度尼西亚南苏拉威西省的高降雨事件。研究了厄尔尼诺-南方涛动(ENSO)、印度洋偶极子模式(IOD)和马德登-朱利安涛动(MJO)对极端降水事件的影响。我们还假设某个位置的事件受到附近其他位置事件的影响。利用南苏拉威西省的降雨资料,结果表明极端降雨事件与IOD和MJO有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomatics and Environmental Engineering
Geomatics and Environmental Engineering Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
2.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信