{"title":"Can a snow structure model estimate snow characteristics relevant to reindeer husbandry","authors":"Sirpa Rasmus, J. Kumpula, Jukka Siitari","doi":"10.7557/2.34.1.2675","DOIUrl":null,"url":null,"abstract":"Snow affects foraging conditions of reindeer e.g. by increasing the energy expenditures for moving and digging work or, in contrast, by making access of arboreal lichen easier. Still the studies concentrating on the role of the snow pack structure on reindeer population dynamics and reindeer management are few. We aim to find out which of the snow characteristics are relevant for reindeer in the northern boreal zone according to the experiences of reindeer herders and is this relevance seen also in reproduction rate of reindeer in this area. We also aim to validate the ability of the snow model SNOWPACK to reliably estimate the relevant snow structure characteristics. We combined meteorological observations, snow structure simulations by the model SNOWPACK and annual reports by reindeer herders during winters 1972-2010 in the Muonio reindeer herding district, northern Finland. Deep snow cover and late snow melt were the most common unfavorable conditions reported. Problematic conditions related to snow structure were icy snow and ground ice or unfrozen ground below the snow, leading to mold growth on ground vegetation. Calf production percentage was negatively correlated to the measured annual snow depth and length of the snow cover time and to the simulated snow density. Winters with icy snow could be distinguished in three out of four reported cases by SNOWPACK simulations and we could detect reliably winters with conditions favorable for mold growth. Both snow amount and also quality affects the reindeer herding and reindeer reproduction rate in northern Finland. Model SNOWPACK can relatively reliably estimate the relevant structural properties of snow. Use of snow structure models could give valuable information about grazing conditions, especially when estimating the possible effects of warming winters on reindeer populations and reindeer husbandry. Similar effects will be experienced also by other arctic and boreal species.","PeriodicalId":30034,"journal":{"name":"Rangifer","volume":"34 1","pages":"37-56"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rangifer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7557/2.34.1.2675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Snow affects foraging conditions of reindeer e.g. by increasing the energy expenditures for moving and digging work or, in contrast, by making access of arboreal lichen easier. Still the studies concentrating on the role of the snow pack structure on reindeer population dynamics and reindeer management are few. We aim to find out which of the snow characteristics are relevant for reindeer in the northern boreal zone according to the experiences of reindeer herders and is this relevance seen also in reproduction rate of reindeer in this area. We also aim to validate the ability of the snow model SNOWPACK to reliably estimate the relevant snow structure characteristics. We combined meteorological observations, snow structure simulations by the model SNOWPACK and annual reports by reindeer herders during winters 1972-2010 in the Muonio reindeer herding district, northern Finland. Deep snow cover and late snow melt were the most common unfavorable conditions reported. Problematic conditions related to snow structure were icy snow and ground ice or unfrozen ground below the snow, leading to mold growth on ground vegetation. Calf production percentage was negatively correlated to the measured annual snow depth and length of the snow cover time and to the simulated snow density. Winters with icy snow could be distinguished in three out of four reported cases by SNOWPACK simulations and we could detect reliably winters with conditions favorable for mold growth. Both snow amount and also quality affects the reindeer herding and reindeer reproduction rate in northern Finland. Model SNOWPACK can relatively reliably estimate the relevant structural properties of snow. Use of snow structure models could give valuable information about grazing conditions, especially when estimating the possible effects of warming winters on reindeer populations and reindeer husbandry. Similar effects will be experienced also by other arctic and boreal species.