Impact of Bias Correction of the Least Squares Estimation on Bootstrap Confidence Intervals for Bifurcating Autoregressive Models

T. Elbayoumi, S. Mostafa
{"title":"Impact of Bias Correction of the Least Squares Estimation on Bootstrap Confidence Intervals for Bifurcating Autoregressive Models","authors":"T. Elbayoumi, S. Mostafa","doi":"10.6339/23-jds1092","DOIUrl":null,"url":null,"abstract":"The least squares (LS) estimator of the autoregressive coefficient in the bifurcating autoregressive (BAR) model was recently shown to suffer from substantial bias, especially for small to moderate samples. This study investigates the impact of the bias in the LS estimator on the behavior of various types of bootstrap confidence intervals for the autoregressive coefficient and introduces methods for constructing bias-corrected bootstrap confidence intervals. We first describe several bootstrap confidence interval procedures for the autoregressive coefficient of the BAR model and present their bias-corrected versions. The behavior of uncorrected and corrected confidence interval procedures is studied empirically through extensive Monte Carlo simulations and two real cell lineage data applications. The empirical results show that the bias in the LS estimator can have a significant negative impact on the behavior of bootstrap confidence intervals and that bias correction can significantly improve the performance of bootstrap confidence intervals in terms of coverage, width, and symmetry.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/23-jds1092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The least squares (LS) estimator of the autoregressive coefficient in the bifurcating autoregressive (BAR) model was recently shown to suffer from substantial bias, especially for small to moderate samples. This study investigates the impact of the bias in the LS estimator on the behavior of various types of bootstrap confidence intervals for the autoregressive coefficient and introduces methods for constructing bias-corrected bootstrap confidence intervals. We first describe several bootstrap confidence interval procedures for the autoregressive coefficient of the BAR model and present their bias-corrected versions. The behavior of uncorrected and corrected confidence interval procedures is studied empirically through extensive Monte Carlo simulations and two real cell lineage data applications. The empirical results show that the bias in the LS estimator can have a significant negative impact on the behavior of bootstrap confidence intervals and that bias correction can significantly improve the performance of bootstrap confidence intervals in terms of coverage, width, and symmetry.
最小二乘估计偏差校正对分岔自回归模型自举置信区间的影响
分岔自回归(BAR)模型中自回归系数的最小二乘(LS)估计量最近被证明存在很大的偏差,特别是对于小到中等样本。本文研究了LS估计量的偏差对自回归系数的各种类型的自举置信区间的影响,并介绍了构造偏差校正的自举置信区间的方法。我们首先描述了BAR模型自回归系数的几个自举置信区间过程,并给出了它们的偏差校正版本。通过广泛的蒙特卡罗模拟和两个真实的细胞谱系数据应用,对未校正和校正置信区间程序的行为进行了经验研究。实证结果表明,LS估计器中的偏差会对自举置信区间的行为产生显著的负面影响,并且偏差校正可以显著提高自举置信区间在覆盖率、宽度和对称性方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信