Identifying Prerequisite Courses in Undergraduate Biology Using Machine Learning

Youngjin Lee
{"title":"Identifying Prerequisite Courses in Undergraduate Biology Using Machine Learning","authors":"Youngjin Lee","doi":"10.6339/22-jds1068","DOIUrl":null,"url":null,"abstract":"Many undergraduate students who matriculated in Science, Technology, Engineering and Mathematics (STEM) degree programs drop out or switch their major. Previous studies indicate that performance of students in prerequisite courses is important for attrition of students in STEM. This study analyzed demographic information, ACT/SAT score, and performance of students in freshman year courses to develop machine learning models predicting their success in earning a bachelor’s degree in biology. The predictive model based on Random Forest (RF) and Extreme Gradient Boosting (XGBoost) showed a better performance in terms of AUC (Area Under the Curve) with more balanced sensitivity and specificity than Logistic Regression (LR), K-Nearest Neighbor (KNN), and Neural Network (NN) models. An explainable machine learning approach called break-down was employed to identify important freshman year courses that could have a larger impact on student success at the biology degree program and student levels. More important courses identified at the program level can help program coordinators to prioritize their effort in addressing student attrition while more important courses identified at the student level can help academic advisors to provide more personalized, data-driven guidance to students.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":"491 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/22-jds1068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many undergraduate students who matriculated in Science, Technology, Engineering and Mathematics (STEM) degree programs drop out or switch their major. Previous studies indicate that performance of students in prerequisite courses is important for attrition of students in STEM. This study analyzed demographic information, ACT/SAT score, and performance of students in freshman year courses to develop machine learning models predicting their success in earning a bachelor’s degree in biology. The predictive model based on Random Forest (RF) and Extreme Gradient Boosting (XGBoost) showed a better performance in terms of AUC (Area Under the Curve) with more balanced sensitivity and specificity than Logistic Regression (LR), K-Nearest Neighbor (KNN), and Neural Network (NN) models. An explainable machine learning approach called break-down was employed to identify important freshman year courses that could have a larger impact on student success at the biology degree program and student levels. More important courses identified at the program level can help program coordinators to prioritize their effort in addressing student attrition while more important courses identified at the student level can help academic advisors to provide more personalized, data-driven guidance to students.
利用机器学习确定本科生物学的必修课程
许多攻读科学、技术、工程和数学(STEM)学位课程的本科生中途退学或转专业。先前的研究表明,学生在预科课程中的表现对STEM学生的流失很重要。这项研究分析了人口统计信息、ACT/SAT分数和学生在大一课程中的表现,以开发预测他们成功获得生物学学士学位的机器学习模型。与Logistic回归(LR)、k近邻(KNN)和神经网络(NN)模型相比,基于随机森林(RF)和极端梯度增强(XGBoost)的预测模型在AUC(曲线下面积)方面表现出更好的性能,具有更好的敏感性和特异性。一种可解释的机器学习方法被称为分解,用于确定重要的大一课程,这些课程可能对学生在生物学学位课程和学生水平上的成功产生更大的影响。在项目层面确定更重要的课程可以帮助项目协调员优先考虑他们的努力,以解决学生流失问题,而在学生层面确定更重要的课程可以帮助学术顾问为学生提供更个性化的、数据驱动的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信