Revisiting the Use of Generalized Least Squares in Time Series Regression Models

Yue Fang, S. Koreisha, Q. Shao
{"title":"Revisiting the Use of Generalized Least Squares in Time Series Regression Models","authors":"Yue Fang, S. Koreisha, Q. Shao","doi":"10.6339/23-jds1108","DOIUrl":null,"url":null,"abstract":"Linear regression models are widely used in empirical studies. When serial correlation is present in the residuals, generalized least squares (GLS) estimation is commonly used to improve estimation efficiency. This paper proposes the use of an alternative estimator, the approximate generalized least squares estimators based on high-order AR(p) processes (GLS-AR). We show that GLS-AR estimators are asymptotically efficient as GLS estimators, as both the number of AR lag, p, and the number of observations, n, increase together so that $p=o({n^{1/4}})$ in the limit. The proposed GLS-AR estimators do not require the identification of the residual serial autocorrelation structure and perform more robust in finite samples than the conventional FGLS-based tests. Finally, we illustrate the usefulness of GLS-AR method by applying it to the global warming data from 1850–2012.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/23-jds1108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Linear regression models are widely used in empirical studies. When serial correlation is present in the residuals, generalized least squares (GLS) estimation is commonly used to improve estimation efficiency. This paper proposes the use of an alternative estimator, the approximate generalized least squares estimators based on high-order AR(p) processes (GLS-AR). We show that GLS-AR estimators are asymptotically efficient as GLS estimators, as both the number of AR lag, p, and the number of observations, n, increase together so that $p=o({n^{1/4}})$ in the limit. The proposed GLS-AR estimators do not require the identification of the residual serial autocorrelation structure and perform more robust in finite samples than the conventional FGLS-based tests. Finally, we illustrate the usefulness of GLS-AR method by applying it to the global warming data from 1850–2012.
回顾广义最小二乘在时间序列回归模型中的应用
线性回归模型在实证研究中被广泛使用。当残差中存在序列相关时,一般采用广义最小二乘(GLS)估计来提高估计效率。本文提出了一种替代估计量——基于高阶AR(p)过程的近似广义最小二乘估计量(GLS-AR)。我们证明了GLS-AR估计器作为GLS估计器是渐近有效的,因为AR滞后数p和观测数n一起增加,使得$p= 0 ({n^{1/4}})$在极限上。所提出的GLS-AR估计器不需要识别残差序列自相关结构,并且在有限样本中比传统的基于fgls的测试具有更高的鲁棒性。最后,通过对1850-2012年全球变暖数据的分析,说明了GLS-AR方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信