Herbert Sinduja Joseph, Thamilselvi Pachiappan, Siva Avudaiappan, P. Guindos
{"title":"Prediction of the mechanical properties of concrete incorporating simultaneous utilization of fine and coarse recycled aggregate","authors":"Herbert Sinduja Joseph, Thamilselvi Pachiappan, Siva Avudaiappan, P. Guindos","doi":"10.7764/rdlc.22.1.178","DOIUrl":null,"url":null,"abstract":"The mechanical properties of concrete were optimized using response surface methodology (RSM) and fuzzy logic. The aggregate portion of the concrete was replaced with recycled aggregate to address the environmental problems caused by building demolition wastes. The essential key factors that influenced the suitability of recycled aggregate in concrete applications are the compressive strength (CS), flexural strength (FS), and the split tensile strength (STS). The experiments were designed with nine combinations of two input factors (percentage of coarse and fine recycled aggregates) at different levels 30, 60, and 100%. Furthermore, optimization techniques were used to determine the strong correlations between the variables and the mechanical parameters. Such optimization techniques helped to identify the optimistic maximum strength for replacing 44% coarse and 65% fine recycled aggregate. Using RSM, the maximum strength results were found to be: CS at 7, 28, 56, and 90 days were 23.61, 35.04, 40.02, and 43.63 N/mm2, respectively, FS 3.6 N/mm2 and STS 2.0 N/mm2. The maximum strength parameters were found using fuzzy logic: CS at 7, 28, 56, and 90 days were 23.5, 35.8, 41, and 46.7 N/mm2, respectively, FS 4.13 N/mm2 and STS 1.97 N/mm2. Such optimization can be carried out to lower the material wastage, energy consumption, and expenses for the production.","PeriodicalId":54473,"journal":{"name":"Revista de la Construccion","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Construccion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7764/rdlc.22.1.178","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical properties of concrete were optimized using response surface methodology (RSM) and fuzzy logic. The aggregate portion of the concrete was replaced with recycled aggregate to address the environmental problems caused by building demolition wastes. The essential key factors that influenced the suitability of recycled aggregate in concrete applications are the compressive strength (CS), flexural strength (FS), and the split tensile strength (STS). The experiments were designed with nine combinations of two input factors (percentage of coarse and fine recycled aggregates) at different levels 30, 60, and 100%. Furthermore, optimization techniques were used to determine the strong correlations between the variables and the mechanical parameters. Such optimization techniques helped to identify the optimistic maximum strength for replacing 44% coarse and 65% fine recycled aggregate. Using RSM, the maximum strength results were found to be: CS at 7, 28, 56, and 90 days were 23.61, 35.04, 40.02, and 43.63 N/mm2, respectively, FS 3.6 N/mm2 and STS 2.0 N/mm2. The maximum strength parameters were found using fuzzy logic: CS at 7, 28, 56, and 90 days were 23.5, 35.8, 41, and 46.7 N/mm2, respectively, FS 4.13 N/mm2 and STS 1.97 N/mm2. Such optimization can be carried out to lower the material wastage, energy consumption, and expenses for the production.
期刊介绍:
The Journal of Construction is aimed at professionals, constructors, academics, researchers, companies, architects, engineers, and anyone who wishes to expand and update their knowledge about construction. We therefore invite all researchers, academics, and professionals to send their contributions for assessment and possible publication in this journal. The publications are free of publication charges.
OBJECTIVES
The objectives of the Journal of Construction are:
1. To disseminate new knowledge in all areas related to construction (Building, Civil Works, Materials, Business, Education, etc.).
2. To provide professionals in the area with material for discussion to refresh and update their knowledge.
3. To disseminate new applied technologies in construction nationally and internationally.
4. To provide national and foreign academics with an internationally endorsed medium in which to share their knowledge and debate the topics raised.