{"title":"Model studies on recycled whole rubber tyre reinforced granular fillings on weak soil","authors":"T. Geçkil, Talha Sarıcı, Bahadir Ok","doi":"10.7764/rdlc.21.2.264","DOIUrl":null,"url":null,"abstract":"The main purpose of this study is to determine the stress-strain behaviour of a rigid circular footing placed on recycled rubber tyre-reinforced granular filling built on weak soil. For this purpose, model plate loading tests were carried out on reinforced/unreinforced granular filling built with natural aggregates (NA) or construction and demolition waste materials (CDW). The rubber tyre used for reinforcement has become a waste material by completing its service life but it has retained its typical cylindrical shape. In model plate loading tests, the effects of the granular fillings, the type of fillings material and the placement of whole rubber tyre and/or geotextile in the granular fillings were investigated. Depending on the results of tests, it was determined that the bearing capacity was increased by reinforcing with the rubber tyre and/or the geotextile. Furthermore, it was specified that the highest increase in bearing capacity was occurred case of by reinforcing with the geotextile together with the rubber tyre of the granular filling. The CDW and the NA fills reinforced with geotextile together with the rubber tyre increased the bearing capacity of weak soils by 6.59 and 8.49 times, respectively, for the 5% deformation ratio. On the other hand, it was reported that although the bearing capacity of the NA was higher than that of the CDW, the bearing capacity of the reinforced CDW approached that of the NA.","PeriodicalId":54473,"journal":{"name":"Revista de la Construccion","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Construccion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7764/rdlc.21.2.264","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The main purpose of this study is to determine the stress-strain behaviour of a rigid circular footing placed on recycled rubber tyre-reinforced granular filling built on weak soil. For this purpose, model plate loading tests were carried out on reinforced/unreinforced granular filling built with natural aggregates (NA) or construction and demolition waste materials (CDW). The rubber tyre used for reinforcement has become a waste material by completing its service life but it has retained its typical cylindrical shape. In model plate loading tests, the effects of the granular fillings, the type of fillings material and the placement of whole rubber tyre and/or geotextile in the granular fillings were investigated. Depending on the results of tests, it was determined that the bearing capacity was increased by reinforcing with the rubber tyre and/or the geotextile. Furthermore, it was specified that the highest increase in bearing capacity was occurred case of by reinforcing with the geotextile together with the rubber tyre of the granular filling. The CDW and the NA fills reinforced with geotextile together with the rubber tyre increased the bearing capacity of weak soils by 6.59 and 8.49 times, respectively, for the 5% deformation ratio. On the other hand, it was reported that although the bearing capacity of the NA was higher than that of the CDW, the bearing capacity of the reinforced CDW approached that of the NA.
期刊介绍:
The Journal of Construction is aimed at professionals, constructors, academics, researchers, companies, architects, engineers, and anyone who wishes to expand and update their knowledge about construction. We therefore invite all researchers, academics, and professionals to send their contributions for assessment and possible publication in this journal. The publications are free of publication charges.
OBJECTIVES
The objectives of the Journal of Construction are:
1. To disseminate new knowledge in all areas related to construction (Building, Civil Works, Materials, Business, Education, etc.).
2. To provide professionals in the area with material for discussion to refresh and update their knowledge.
3. To disseminate new applied technologies in construction nationally and internationally.
4. To provide national and foreign academics with an internationally endorsed medium in which to share their knowledge and debate the topics raised.