Calibration models for the nutritional quality of fresh pastures by nearinfrared reflectance spectroscopy

Q2 Agricultural and Biological Sciences
I. Lobos, Cristian J. Moscoso, Paula Pavez
{"title":"Calibration models for the nutritional quality of fresh pastures by nearinfrared reflectance spectroscopy","authors":"I. Lobos, Cristian J. Moscoso, Paula Pavez","doi":"10.7764/rcia.v46i3.2020","DOIUrl":null,"url":null,"abstract":"High levels of animal performance and health depend on high-quality nutrition. Determining forage quality both reliably and quickly is essential for improving animal production. The present study describes the use of near infrared reflectance spectroscopy (NIRS) for the quantification of nutritional quality (dry matter (DM), water-soluble carbohydrates (WSC), crude protein (CP), in vitro dry matter digestibility (DMD), organic matter digestibility (OMD), neutral detergent fiber (NDF) and the WSC/CP ratio) in samples from fresh pastures in southern Chile (39° to 40° S). Calibration models were developed with wet chemistry and NIRS spectral data using partial least squares regression (PLSR). The coefficients of determination in the validation set ranged between 0.69 and 0.93, and the error of prediction varied from 0.064 to 2.89. The evaluation of the model confirmed the high predictive ability of NIRS for DM and CP and its low predictive ability for DMD, OMD, NDF and the WSC/CP ratio. It was not possible to obtain a model for WSC because it would have required an increased number of samples to improve the spectral variability and the R2 value (> 80%).","PeriodicalId":50695,"journal":{"name":"Ciencia E Investigacion Agraria","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia E Investigacion Agraria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7764/rcia.v46i3.2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 9

Abstract

High levels of animal performance and health depend on high-quality nutrition. Determining forage quality both reliably and quickly is essential for improving animal production. The present study describes the use of near infrared reflectance spectroscopy (NIRS) for the quantification of nutritional quality (dry matter (DM), water-soluble carbohydrates (WSC), crude protein (CP), in vitro dry matter digestibility (DMD), organic matter digestibility (OMD), neutral detergent fiber (NDF) and the WSC/CP ratio) in samples from fresh pastures in southern Chile (39° to 40° S). Calibration models were developed with wet chemistry and NIRS spectral data using partial least squares regression (PLSR). The coefficients of determination in the validation set ranged between 0.69 and 0.93, and the error of prediction varied from 0.064 to 2.89. The evaluation of the model confirmed the high predictive ability of NIRS for DM and CP and its low predictive ability for DMD, OMD, NDF and the WSC/CP ratio. It was not possible to obtain a model for WSC because it would have required an increased number of samples to improve the spectral variability and the R2 value (> 80%).
用近红外反射光谱法标定新鲜牧草营养品质模型
高水平的动物生产性能和健康取决于高质量的营养。可靠、快速地测定牧草质量对提高畜禽产量至关重要。本研究描述了利用近红外反射光谱(NIRS)定量测定小麦营养品质(干物质(DM)、水溶性碳水化合物(WSC)、粗蛋白质(CP)、体外干物质消化率(DMD)、有机物质消化率(OMD)、中性洗涤纤维(NDF)和WSC/CP比(WSC/CP ratio)在智利南部(39°至40°S)新鲜牧场样品中的测定。利用湿化学和近红外光谱数据,利用偏最小二乘回归(PLSR)建立校准模型。验证集的决定系数在0.69 ~ 0.93之间,预测误差在0.064 ~ 2.89之间。对模型的评价证实了近红外光谱对DM和CP的预测能力较高,对DMD、OMD、NDF和WSC/CP比的预测能力较低。不可能获得WSC的模型,因为它需要增加样本数量来改善光谱变异性和R2值(> 80%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ciencia E Investigacion Agraria
Ciencia E Investigacion Agraria 农林科学-农业综合
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The subject matter that is considered to be appropriate for publication in International Journal of Agriculture and Natural Resources (formerly Ciencia e Investigación Agraria) is all new scientific and technological research in agriculture, animal production, forestry, natural resources and other related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信