Design and applications of a neural networks assisted portable liquid surface tensiometer

IF 0.5 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY
Tomas Drevinskas, Jūratė Balevičiūtė, K. Bimbiraitė-Survilienė, Gediminas Dūda, M. Stankevičius, Nicola Tiso, R. Mickienė, Domantas Armonavičius, D. Levisauskas, V. Kaškonienė, O. Ragažinskienė, S. Grigiškis, E. Donati, M. Zacchini, A. Maruška
{"title":"Design and applications of a neural networks assisted portable liquid surface tensiometer","authors":"Tomas Drevinskas, Jūratė Balevičiūtė, K. Bimbiraitė-Survilienė, Gediminas Dūda, M. Stankevičius, Nicola Tiso, R. Mickienė, Domantas Armonavičius, D. Levisauskas, V. Kaškonienė, O. Ragažinskienė, S. Grigiškis, E. Donati, M. Zacchini, A. Maruška","doi":"10.6001/chemija.v32i3-4.4545","DOIUrl":null,"url":null,"abstract":"In this paper, a portable instrument for surface tension measurements, characterization and applications is described. The instrumentation is operated wirelessly, and samples can be measured in situ. The instrument has changeable different size probes; therefore, it is possible to measure samples from 1 ml up to 10 ml. The response of the measured retraction force and the concentrations of measured surfactant is complex. Therefore, two calibration methods were proposed: (i) the conditional calibration using polynomial and logarithmic fitting and (ii) the neural network trained model prediction of the surfactant concentration in samples. Calibrating the instrument, the neural network trained model showed a superior coefficient of determination (0.999), comparing it to the conditional calibration using polynomial (0.992) and logarithmic (0.991) fit equations.","PeriodicalId":9720,"journal":{"name":"Chemija","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemija","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.6001/chemija.v32i3-4.4545","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a portable instrument for surface tension measurements, characterization and applications is described. The instrumentation is operated wirelessly, and samples can be measured in situ. The instrument has changeable different size probes; therefore, it is possible to measure samples from 1 ml up to 10 ml. The response of the measured retraction force and the concentrations of measured surfactant is complex. Therefore, two calibration methods were proposed: (i) the conditional calibration using polynomial and logarithmic fitting and (ii) the neural network trained model prediction of the surfactant concentration in samples. Calibrating the instrument, the neural network trained model showed a superior coefficient of determination (0.999), comparing it to the conditional calibration using polynomial (0.992) and logarithmic (0.991) fit equations.
神经网络辅助便携式液体表面张力计的设计与应用
本文介绍了一种用于表面张力测量的便携式仪器,其特性和应用。该仪器是无线操作的,样品可以在现场测量。仪器具有可更换的不同尺寸的探头;因此,可以测量从1ml到10ml的样品。测量的缩回力和测量的表面活性剂浓度的响应是复杂的。为此,提出了两种校正方法:(1)采用多项式和对数拟合的条件校正方法;(2)采用神经网络训练模型预测样品中表面活性剂浓度。与使用多项式(0.992)和对数(0.991)拟合方程的条件校准相比,神经网络训练的模型具有更优的决定系数(0.999)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemija
Chemija 化学-化学综合
CiteScore
1.30
自引率
16.70%
发文量
14
审稿时长
>12 weeks
期刊介绍: Chemija publishes original research articles and reviews from all branches of modern chemistry, including physical, inorganic, analytical, organic, polymer chemistry, electrochemistry, and multidisciplinary approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信