Multivariate Analysis of Data on Migraine Treatment

A. Tarsitano, I. L. Amerise
{"title":"Multivariate Analysis of Data on Migraine Treatment","authors":"A. Tarsitano, I. L. Amerise","doi":"10.6000/1929-6029.2019.08.06","DOIUrl":null,"url":null,"abstract":": Migraineur constitutes a multidimensional model of health disorder involving a complex combination of genetic, psychological, demographic, enviromental and economic factors. This model provides a framework to describe limitations of an individual functional ability and quality of life, and to aid in the elaboration of more adequate intervention programs for each patient. Our primary objective in this paper is a data-driven profiling of patients. The approach followed consists of examining affinity/dissimilarity between sufferers on the basis of different family of indicators and then aggregating multiple partial matrices, where each matrix expresses a particular notion of the dissimilarity of one patient from another. One important particularity of our method is the notion of multi-dimensional dissimilarity for static and dynamic indicators, without ignoring any portion of data. The partial dissimilarity matrices are assembled in the form of a global matrix, which is used as input of subsequent calculations, such as multidimensional scaling and cluster analysis. Our main contribution is to show how multi-scale, cross-section and longitudinal data from individuals involved in a migraine treatment program may optimally be combined to allow profiling migraine-affected patients.","PeriodicalId":73480,"journal":{"name":"International journal of statistics in medical research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of statistics in medical research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1929-6029.2019.08.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Migraineur constitutes a multidimensional model of health disorder involving a complex combination of genetic, psychological, demographic, enviromental and economic factors. This model provides a framework to describe limitations of an individual functional ability and quality of life, and to aid in the elaboration of more adequate intervention programs for each patient. Our primary objective in this paper is a data-driven profiling of patients. The approach followed consists of examining affinity/dissimilarity between sufferers on the basis of different family of indicators and then aggregating multiple partial matrices, where each matrix expresses a particular notion of the dissimilarity of one patient from another. One important particularity of our method is the notion of multi-dimensional dissimilarity for static and dynamic indicators, without ignoring any portion of data. The partial dissimilarity matrices are assembled in the form of a global matrix, which is used as input of subsequent calculations, such as multidimensional scaling and cluster analysis. Our main contribution is to show how multi-scale, cross-section and longitudinal data from individuals involved in a migraine treatment program may optimally be combined to allow profiling migraine-affected patients.
偏头痛治疗数据的多变量分析
偏头痛是一种涉及遗传、心理、人口、环境和经济因素的复杂组合的多维健康失调模式。该模型提供了一个框架来描述个体功能能力和生活质量的局限性,并有助于为每位患者制定更充分的干预方案。我们在这篇论文中的主要目标是对患者进行数据驱动分析。接下来的方法包括在不同的指标家族的基础上检查患者之间的亲和力/差异性,然后聚集多个部分矩阵,其中每个矩阵表示一个患者与另一个患者的差异性的特定概念。我们方法的一个重要特点是静态和动态指标的多维不相似性的概念,而不忽略数据的任何部分。部分不相似矩阵以全局矩阵的形式组合,作为后续计算的输入,如多维缩放和聚类分析。我们的主要贡献是展示了如何将参与偏头痛治疗项目的个体的多尺度、横截面和纵向数据最佳地结合起来,从而对偏头痛患者进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信