Algebras of Complete Hörmander Vector Fields, and Lie-Group Construction

IF 0.2 Q4 MATHEMATICS
A. Bonfiglioli
{"title":"Algebras of Complete Hörmander Vector Fields, and Lie-Group Construction","authors":"A. Bonfiglioli","doi":"10.6092/ISSN.2240-2829/4707","DOIUrl":null,"url":null,"abstract":"The aim of this note is to characterize the Lie algebras g of the analytic vector fields in R N which coincide with the Lie algebras of the (analytic) Lie groups defined on R N (with its usual differentiable structure). We show that such a characterization amounts to asking that: (i) g is N-dimensional; (ii) g admits a set of Lie generators which are complete vector fields; (iii) g satisfies Hormander’s rank condition. These conditions are necessary, sufficient and mutually independent. Our approach is constructive, in that for any such g we show how to construct a Lie group G = (R N , *) whose Lie algebra is g. We do not make use of Lie’s Third Theorem, but we only exploit the Campbell-Baker-Hausdorff-Dynkin Theorem for ODE’s.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"5 1","pages":"15-30"},"PeriodicalIF":0.2000,"publicationDate":"2014-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/4707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this note is to characterize the Lie algebras g of the analytic vector fields in R N which coincide with the Lie algebras of the (analytic) Lie groups defined on R N (with its usual differentiable structure). We show that such a characterization amounts to asking that: (i) g is N-dimensional; (ii) g admits a set of Lie generators which are complete vector fields; (iii) g satisfies Hormander’s rank condition. These conditions are necessary, sufficient and mutually independent. Our approach is constructive, in that for any such g we show how to construct a Lie group G = (R N , *) whose Lie algebra is g. We do not make use of Lie’s Third Theorem, but we only exploit the Campbell-Baker-Hausdorff-Dynkin Theorem for ODE’s.
完全的代数Hörmander向量场,和李群构造
本文的目的是描述rn中解析向量场的李代数g,这些李代数与rn上定义的(解析)李群的李代数重合(具有通常的可微结构)。我们证明,这样的表征相当于要求:(i) g是n维的;(ii) g允许一组李生子,它们是完全向量场;(iii) g满足Hormander的秩条件。这些条件是必要的、充分的和相互独立的。我们的方法是建设性的,因为对于任何这样的g,我们展示了如何构造一个李群g = (R N, *),其李代数为g。我们没有使用李氏第三定理,但我们只利用了Campbell-Baker-Hausdorff-Dynkin定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信